

    
      
          
            
  
Qlib Documentation

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.


Document Structure





GETTING STARTED:


	Introduction
	Introduction

	Framework





	Quick Start
	Introduction

	Installation

	Prepare Data

	Auto Quant Research Workflow

	Custom Model Integration










FIRST STEPS:


	Installation
	Qlib Installation





	Initialization
	Initialization
	Parameters









	Data Retrieval
	Introduction

	Examples

	API





	Custom Model Integration
	Introduction

	Custom Model Class

	Configuration File

	Model Testing

	Reference










MAIN COMPONENTS:


	Workflow: Workflow Management
	Introduction

	Complete Example

	Configuration File
	Qlib Init Section

	Task Section









	Data Layer: Data Framework & Usage
	Introduction

	Data Preparation
	Qlib Format Data

	Qlib Format Dataset

	Automatic update of daily frequency data

	Converting CSV Format into Qlib Format

	Stock Pool (Market)

	Multiple Stock Modes





	Data API
	Data Retrieval

	Feature

	Filter

	Reference





	Data Loader
	QlibDataLoader

	StaticDataLoader

	Interface

	API





	Data Handler
	DataHandlerLP

	Interface

	Processor

	Example

	API





	Dataset
	API





	Cache
	Global Memory Cache

	ExpressionCache

	DatasetCache





	Data and Cache File Structure





	Forecast Model: Model Training & Prediction
	Introduction

	Base Class & Interface

	Example

	Custom Model

	API





	Portfolio Management and Backtest
	Introduction

	Base Class & Interface
	BaseStrategy

	WeightStrategyBase





	Implemented Strategy
	TopkDropoutStrategy

	EnhancedIndexingStrategy





	Usage & Example
	Prediction Score

	Running backtest

	Result





	Reference





	Nested Decision Execution: High-Frequency Trading
	Introduction

	Example





	Meta Controller: Meta-Task & Meta-Dataset & Meta-Model
	Introduction

	Meta Task

	Meta Dataset

	Meta Model
	General Meta Model

	Meta Task Model

	Meta Guide Model





	Example





	Qlib Recorder: Experiment Management
	Introduction

	Qlib Recorder

	Experiment Manager

	Experiment

	Recorder

	Record Template

	Known Limitations





	Analysis: Evaluation & Results Analysis
	Introduction

	Graphical Reports

	Usage & Example
	Usage of analysis_position.report

	Usage of analysis_position.score_ic

	Usage of analysis_position.risk_analysis

	Usage of analysis_model.analysis_model_performance









	Online Serving: Online Management & Strategy & Tool
	Introduction

	Online Manager

	Online Strategy

	Online Tool

	Updater





	Reinforcement Learning
	Guidance
	Beginners to Reinforcement Learning Algorithms

	Reinforcement Learning Algorithm Researcher

	Quantitative Researcher





	Overall
	Reinforcement Learning

	Potential Application Scenarios in Quantitative Trading





	Quick Start

	Framework
	EnvWrapper

	Policy

	Training Vessel & Trainer














OTHER COMPONENTS/FEATURES/TOPICS:


	Building Formulaic Alphas
	Introduction

	Building Formulaic Alphas in Qlib
	Example





	Reference





	Online & Offline mode
	Introduction

	Qlib-Server

	Reference





	Serialization
	Introduction

	Serializable Class

	Example

	API





	Task Management
	Introduction

	Task Generating

	Task Storing

	Task Training

	Task Collecting





	Point-In-Time database
	Introduction

	Data Preparation

	File-based design for PIT data










FOR DEVELOPERS:


	Code Standard
	Docstring

	Continuous Integration





	Development Guidance






REFERENCE:


	API
	Data
	Provider

	Filter

	Class

	Operator

	Cache

	Storage

	Dataset





	Contrib
	Model

	Strategy

	Evaluate

	Report





	Workflow
	Experiment Manager

	Experiment

	Recorder

	Record Template





	Task Management
	TaskGen

	TaskManager

	Trainer

	Collector

	Group

	Ensemble

	Utils





	Online Serving
	Online Manager

	Online Strategy

	Online Tool

	RecordUpdater





	Utils
	Serializable





	RL
	Base Component

	Strategy

	Trainer

	Order Execution

	Utils















	FAQ
	Qlib Frequently Asked Questions
	1. RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase…

	2. qlib.data.cache.QlibCacheException: It sees the key(…) of the redis lock has existed in your redis db now.

	3. ModuleNotFoundError: No module named ‘qlib.data._libs.rolling’

	4. BadNamespaceError: / is not a connected namespace

	5. TypeError: send() got an unexpected keyword argument ‘binary’














Change Log:


	Change Log
	Version 0.1.0

	Version 0.1.1

	Version 0.1.2

	Version 0.1.3

	Version 0.2.0

	Version 0.2.1

	Version 0.2.2

	Version 0.2.3

	Version 0.2.4

	Version 0.3.0

	Version 0.3.1

	Version 0.3.2

	Version 0.3.3

	Version 0.3.4

	Version 0.3.5

	Version 0.4.0

	Version 0.4.1

	Version 0.4.2

	Version 0.4.3

	Version 0.4.4

	Version 0.4.5

	Version 0.4.6

	Version 0.5.0

	Version 0.8.0

	Other Versions













          

      

      

    

  

    
      
          
            
  
Qlib: Quantitative Platform


Introduction

[image: ../_images/white_bg_rec+word.png]
Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

With Qlib, users can easily try their ideas to create better Quant investment strategies.



Framework

[image: ../_images/framework1.svg]

At the module level, Qlib is a platform that consists of above components. The components are designed as loose-coupled modules and each component could be used stand-alone.

This framework may be intimidating for new users to Qlib. It tries to accurately include a lot of details of Qlib’s design.
For users new to Qlib, you can skip it first and read it later.







	Name

	Description





	Infrastructure layer

	Infrastructure layer provides underlying support for Quant research.
DataServer provides high-performance infrastructure for users to manage
and retrieve raw data. Trainer provides flexible interface to control
the training process of models which enable algorithms controlling the
training process.



	Learning Framework layer

	The Forecast Model and Trading Agent are learnable. They are learned
based on the Learning Framework layer and then applied to multiple scenarios
in Workflow layer. The supported learning paradigms can be categorized into
reinforcement learning and supervised learning.  The learning framework
leverages the Workflow layer as well(e.g. sharing Information Extractor,
creating environments based on Execution Env).



	Workflow layer

	Workflow layer covers the whole workflow of quantitative investment.
Both supervised-learning-based strategies and RL-based Strategies
are supported.
Information Extractor extracts data for models. Forecast Model focuses
on producing all kinds of forecast signals (e.g. alpha, risk) for other
modules.  With these signals Decision Generator will generate the target
trading decisions(i.e. portfolio, orders)
If RL-based Strategies are adopted, the Policy is learned in a end-to-end way,
the trading deicsions are generated directly.
Decisions will be executed by Execution Env
(i.e. the trading market).  There may be multiple levels of Strategy
and Executor (e.g. an order executor trading strategy and intraday order executor
could behave like an interday trading loop and be nested in
daily portfolio management trading strategy and interday trading executor
trading loop)



	Interface layer

	Interface layer tries to present a user-friendly interface for the underlying
system. Analyser module will provide users detailed analysis reports of
forecasting signals, portfolios and execution results







	The modules with hand-drawn style are under development and will be released in the future.


	The modules with dashed borders are highly user-customizable and extendible.




(p.s. framework image is created with https://draw.io/)





          

      

      

    

  

    
      
          
            
  
Quick Start


Introduction

This Quick Start guide tries to demonstrate


	It’s very easy to build a complete Quant research workflow and try users’ ideas with Qlib.


	Though with public data and simple models, machine learning technologies work very well in practical Quant investment.






Installation

Users can easily intsall Qlib according to the following steps:


	Before installing Qlib from source, users need to install some dependencies:







	Clone the repository and install Qlib









To known more about installation, please refer to Qlib Installation.



Prepare Data

Load and prepare data by running the following code:

This dataset is created by public data collected by crawler scripts in scripts/data_collector/, which have been released in the same repository. Users could create the same dataset with it.

To known more about prepare data, please refer to Data Preparation.



Auto Quant Research Workflow

Qlib provides a tool named qrun to run the whole workflow automatically (including building dataset, training models, backtest and evaluation). Users can start an auto quant research workflow and have a graphical reports analysis according to the following steps:


	
	Quant Research Workflow:

	
	Run  qrun with a config file of the LightGBM model workflow_config_lightgbm.yaml as following.







	
	Workflow result

	The result of qrun is as follows, which is also the typical result of Forecast model(alpha). Please refer to  Intraday Trading. for more details about the result.

                                                  risk
excess_return_without_cost mean               0.000605
                           std                0.005481
                           annualized_return  0.152373
                           information_ratio  1.751319
                           max_drawdown      -0.059055
excess_return_with_cost    mean               0.000410
                           std                0.005478
                           annualized_return  0.103265
                           information_ratio  1.187411
                           max_drawdown      -0.075024













To know more about workflow and qrun, please refer to Workflow: Workflow Management.







	
	Graphical Reports Analysis:

	
	
	Run examples/workflow_by_code.ipynb with jupyter notebook

	Users can have portfolio analysis or prediction score (model prediction) analysis by run examples/workflow_by_code.ipynb.







	
	Graphical Reports

	Users can get graphical reports about the analysis, please refer to Analysis: Evaluation & Results Analysis for more details.



















Custom Model Integration

Qlib provides a batch of models (such as lightGBM and MLP models) as examples of Forecast Model. In addition to the default model, users can integrate their own custom models into Qlib. If users are interested in the custom model, please refer to Custom Model Integration.





          

      

      

    

  

    
      
          
            
  
Installation


Qlib Installation


Note

Qlib supports both Windows and Linux. It’s recommended to use Qlib in Linux. Qlib supports Python3, which is up to Python3.8.



Users can easily install Qlib by pip according to the following command:

pip install pyqlib





Also, Users can install Qlib by the source code according to the following steps:


	Enter the root directory of Qlib, in which the file setup.py exists.


	Then, please execute the following command to install the environment dependencies and install Qlib:


$ pip install numpy
$ pip install --upgrade cython
$ git clone https://github.com/microsoft/qlib.git && cd qlib
$ python setup.py install













Note

It’s recommended to use anaconda/miniconda to setup the environment. Qlib needs lightgbm and pytorch packages, use pip to install them.



Use the following code to make sure the installation successful:

>>> import qlib
>>> qlib.__version__
<LATEST VERSION>









          

      

      

    

  

    
      
          
            
  
Qlib Initialization


Initialization

Please follow the steps below to initialize Qlib.

Download and prepare the Data: execute the following command to download stock data. Please pay attention that the data is collected from Yahoo Finance [https://finance.yahoo.com/lookup] and the data might not be perfect. We recommend users to prepare their own data if they have high-quality datasets. Please refer to Data for more information about customized dataset.


python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --region cn








Please refer to Data Preparation for more information about get_data.py,

Initialize Qlib before calling other APIs: run following code in python.


import qlib
# region in [REG_CN, REG_US]
from qlib.constant import REG_CN
provider_uri = "~/.qlib/qlib_data/cn_data"  # target_dir
qlib.init(provider_uri=provider_uri, region=REG_CN)









Note

Do not import qlib package in the repository directory  of Qlib, otherwise, errors may occur.




Parameters

Besides provider_uri and region, qlib.init has other parameters.
The following are several important parameters of qlib.init (Qlib has a lot of config. Only part of parameters are limited here. More detailed setting can be found here [https://github.com/microsoft/qlib/blob/main/qlib/config.py]):


	
	provider_uri

	Type: str. The URI of the Qlib data. For example, it could be the location where the data loaded by get_data.py are stored.







	
	region

	
	Type: str, optional parameter(default: qlib.constant.REG_CN).

	Currently: qlib.constant.REG_US (‘us’) and qlib.constant.REG_CN (‘cn’) is supported. Different value of  region will result in different stock market mode.
- qlib.constant.REG_US: US stock market.
- qlib.constant.REG_CN: China stock market.

Different modes will result in different trading limitations and costs.
The region is just shortcuts for defining a batch of configurations [https://github.com/microsoft/qlib/blob/528f74af099bf6156e9480bcd2bb28e453231212/qlib/config.py#L249], which include minimal trading order unit (trade_unit),  trading limitation (limit_threshold) , etc.  It is not a necessary part and users can set the key configurations manually if the existing region setting can’t meet their requirements.











	
	redis_host

	
	Type: str, optional parameter(default: “127.0.0.1”), host of redis

	The lock and cache mechanism relies on redis.











	
	redis_port

	Type: int, optional parameter(default: 6379), port of redis


Note

The value of region should be aligned with the data stored in provider_uri. Currently, scripts/get_data.py only provides China stock market data. If users want to use the US stock market data, they should prepare their own US-stock data in provider_uri and switch to US-stock mode.




Note

If Qlib fails to connect redis via redis_host and redis_port, cache mechanism will not be used! Please refer to Cache for details.









	
	exp_manager

	Type: dict, optional parameter, the setting of experiment manager to be used in qlib. Users can specify an experiment manager class, as well as the tracking URI for all the experiments. However, please be aware that we only support input of a dictionary in the following style for exp_manager. For more information about exp_manager, users can refer to Recorder: Experiment Management.

# For example, if you want to set your tracking_uri to a <specific folder>, you can initialize qlib below
qlib.init(provider_uri=provider_uri, region=REG_CN, exp_manager= {
    "class": "MLflowExpManager",
    "module_path": "qlib.workflow.expm",
    "kwargs": {
        "uri": "python_execution_path/mlruns",
        "default_exp_name": "Experiment",
    }
})











	
	mongo

	Type: dict, optional parameter, the setting of MongoDB [https://www.mongodb.com/] which will be used in some features such as Task Management, with high performance and clustered processing.
Users need to follow the steps in  installation [https://www.mongodb.com/try/download/community]  to install MongoDB firstly and then access it via a URI.
Users can access mongodb with credential by setting “task_url”  to a string like “mongodb://%s:%s@%s” % (user, pwd, host + “:” + port).

# For example, you can initialize qlib below
qlib.init(provider_uri=provider_uri, region=REG_CN, mongo={
    "task_url": "mongodb://localhost:27017/",  # your mongo url
    "task_db_name": "rolling_db", # the database name of Task Management
})











	
	logging_level

	The logging level for the system.







	
	kernels

	The number of processes used when calculating features in Qlib’s expression engine. It is very helpful to set it to 1 when you are debuggin an expression calculating exception














          

      

      

    

  

    
      
          
            
  
Data Retrieval


Introduction

Users can get stock data with Qlib. The following examples demonstrate the basic user interface.



Examples

QLib Initialization:


Note

In order to get the data, users need to initialize Qlib with qlib.init first. Please refer to initialization.



If users followed steps in initialization and downloaded the data, they should use the following code to initialize qlib

>> import qlib
>> qlib.init(provider_uri='~/.qlib/qlib_data/cn_data')





Load trading calendar with given time range and frequency:

>> from qlib.data import D
>> D.calendar(start_time='2010-01-01', end_time='2017-12-31', freq='day')[:2]
[Timestamp('2010-01-04 00:00:00'), Timestamp('2010-01-05 00:00:00')]





Parse a given market name into a stock pool config:

>> from qlib.data import D
>> D.instruments(market='all')
{'market': 'all', 'filter_pipe': []}





Load instruments of certain stock pool in the given time range:

>> from qlib.data import D
>> instruments = D.instruments(market='csi300')
>> D.list_instruments(instruments=instruments, start_time='2010-01-01', end_time='2017-12-31', as_list=True)[:6]
['SH600036', 'SH600110', 'SH600087', 'SH600900', 'SH600089', 'SZ000912']





Load dynamic instruments from a base market according to a name filter

>> from qlib.data import D
>> from qlib.data.filter import NameDFilter
>> nameDFilter = NameDFilter(name_rule_re='SH[0-9]{4}55')
>> instruments = D.instruments(market='csi300', filter_pipe=[nameDFilter])
>> D.list_instruments(instruments=instruments, start_time='2015-01-01', end_time='2016-02-15', as_list=True)
['SH600655', 'SH601555']





Load dynamic instruments from a base market according to an expression filter

>> from qlib.data import D
>> from qlib.data.filter import ExpressionDFilter
>> expressionDFilter = ExpressionDFilter(rule_expression='$close>2000')
>> instruments = D.instruments(market='csi300', filter_pipe=[expressionDFilter])
>> D.list_instruments(instruments=instruments, start_time='2015-01-01', end_time='2016-02-15', as_list=True)
['SZ000651', 'SZ000002', 'SH600655', 'SH600570']





For more details about filter, please refer Filter API.

Load features of certain instruments in a given time range:

>> from qlib.data import D
>> instruments = ['SH600000']
>> fields = ['$close', '$volume', 'Ref($close, 1)', 'Mean($close, 3)', '$high-$low']
>> D.features(instruments, fields, start_time='2010-01-01', end_time='2017-12-31', freq='day').head().to_string()
'                           $close     $volume  Ref($close, 1)  Mean($close, 3)  $high-$low
... instrument  datetime
... SH600000    2010-01-04  86.778313  16162960.0       88.825928        88.061483    2.907631
...             2010-01-05  87.433578  28117442.0       86.778313        87.679273    3.235252
...             2010-01-06  85.713585  23632884.0       87.433578        86.641825    1.720009
...             2010-01-07  83.788803  20813402.0       85.713585        85.645322    3.030487
...             2010-01-08  84.730675  16044853.0       83.788803        84.744354    2.047623'





Load features of certain stock pool in a given time range:


Note

With cache enabled, the qlib data server will cache data all the time for the requested stock pool and fields, it may take longer to process the request for the first time than that without cache. But after the first time, requests with the same stock pool and fields will hit the cache and be processed faster even the requested time period changes.



>> from qlib.data import D
>> from qlib.data.filter import NameDFilter, ExpressionDFilter
>> nameDFilter = NameDFilter(name_rule_re='SH[0-9]{4}55')
>> expressionDFilter = ExpressionDFilter(rule_expression='$close>Ref($close,1)')
>> instruments = D.instruments(market='csi300', filter_pipe=[nameDFilter, expressionDFilter])
>> fields = ['$close', '$volume', 'Ref($close, 1)', 'Mean($close, 3)', '$high-$low']
>> D.features(instruments, fields, start_time='2010-01-01', end_time='2017-12-31', freq='day').head().to_string()
'                              $close        $volume  Ref($close, 1)  Mean($close, 3)  $high-$low
... instrument  datetime
... SH600655    2010-01-04  2699.567383  158193.328125     2619.070312      2626.097738  124.580566
...             2010-01-08  2612.359619   77501.406250     2584.567627      2623.220133   83.373047
...             2010-01-11  2712.982422  160852.390625     2612.359619      2636.636556  146.621582
...             2010-01-12  2788.688232  164587.937500     2712.982422      2704.676758  128.413818
...             2010-01-13  2790.604004  145460.453125     2788.688232      2764.091553  128.413818'





For more details about features, please refer Feature API.


Note

When calling D.features() at the client, use parameter disk_cache=0 to skip dataset cache, use disk_cache=1 to generate and use dataset cache. In addition, when calling at the server, users can use disk_cache=2 to update the dataset cache.



When you are building complicated expressions, implementing all the expressions in a single string may not be easy.
For example, it looks quite long and complicated:

>> from qlib.data import D
>> data = D.features(["sh600519"], ["(($high / $close) + ($open / $close)) * (($high / $close) + ($open / $close)) / (($high / $close) + ($open / $close))"], start_time="20200101")





But using string is not the only way to implement the expression. You can also implement expression by code.
Here is an exmaple which does the same thing as above examples.

>> from qlib.data.ops import *
>> f1 = Feature("high") / Feature("close")
>> f2 = Feature("open") / Feature("close")
>> f3 = f1 + f2
>> f4 = f3 * f3 / f3

>> data = D.features(["sh600519"], [f4], start_time="20200101")
>> data.head()







API

To know more about how to use the Data, go to API Reference: Data API





          

      

      

    

  

    
      
          
            
  
Custom Model Integration


Introduction

Qlib’s Model Zoo includes models such as LightGBM, MLP, LSTM, etc.. These models are examples of Forecast Model. In addition to the default models Qlib provide, users can integrate their own custom models into Qlib.

Users can integrate their own custom models according to the following steps.


	Define a custom model class, which should be a subclass of the qlib.model.base.Model.


	Write a configuration file that describes the path and parameters of the custom model.


	Test the custom model.






Custom Model Class

The Custom models need to inherit qlib.model.base.Model and override the methods in it.


	
	Override the __init__ method

	
	Qlib passes the initialized parameters to the __init__ method.


	The hyperparameters of model in the configuration must be consistent with those defined in the __init__ method.


	Code Example: In the following example, the hyperparameters of model in the configuration file should contain parameters such as loss:mse.


def __init__(self, loss='mse', **kwargs):
    if loss not in {'mse', 'binary'}:
        raise NotImplementedError
    self._scorer = mean_squared_error if loss == 'mse' else roc_auc_score
    self._params.update(objective=loss, **kwargs)
    self._model = None


















	
	Override the fit method

	
	Qlib calls the fit method to train the model.


	The parameters must include training feature dataset, which is designed in the interface.


	The parameters could include some optional parameters with default values, such as num_boost_round = 1000 for GBDT.


	Code Example: In the following example, num_boost_round = 1000 is an optional parameter.


def fit(self, dataset: DatasetH, num_boost_round = 1000, **kwargs):

    # prepare dataset for lgb training and evaluation
    df_train, df_valid = dataset.prepare(
        ["train", "valid"], col_set=["feature", "label"], data_key=DataHandlerLP.DK_L
    )
    x_train, y_train = df_train["feature"], df_train["label"]
    x_valid, y_valid = df_valid["feature"], df_valid["label"]

    # Lightgbm need 1D array as its label
    if y_train.values.ndim == 2 and y_train.values.shape[1] == 1:
        y_train, y_valid = np.squeeze(y_train.values), np.squeeze(y_valid.values)
    else:
        raise ValueError("LightGBM doesn't support multi-label training")

    dtrain = lgb.Dataset(x_train.values, label=y_train)
    dvalid = lgb.Dataset(x_valid.values, label=y_valid)

    # fit the model
    self.model = lgb.train(
        self.params,
        dtrain,
        num_boost_round=num_boost_round,
        valid_sets=[dtrain, dvalid],
        valid_names=["train", "valid"],
        early_stopping_rounds=early_stopping_rounds,
        verbose_eval=verbose_eval,
        evals_result=evals_result,
        **kwargs
    )


















	
	Override the predict method

	
	The parameters must include the parameter dataset, which will be userd to get the test dataset.


	Return the prediction score.


	Please refer to Model API for the parameter types of the fit method.


	Code Example: In the following example, users need to use LightGBM to predict the label(such as preds) of test data x_test and return it.


def predict(self, dataset: DatasetH, **kwargs)-> pandas.Series:
    if self.model is None:
        raise ValueError("model is not fitted yet!")
    x_test = dataset.prepare("test", col_set="feature", data_key=DataHandlerLP.DK_I)
    return pd.Series(self.model.predict(x_test.values), index=x_test.index)


















	
	Override the finetune method (Optional)

	
	This method is optional to the users. When users want to use this method on their own models, they should inherit the ModelFT base class, which includes the interface of finetune.


	The parameters must include the parameter dataset.


	Code Example: In the following example, users will use LightGBM as the model and finetune it.


def finetune(self, dataset: DatasetH, num_boost_round=10, verbose_eval=20):
    # Based on existing model and finetune by train more rounds
    dtrain, _ = self._prepare_data(dataset)
    self.model = lgb.train(
        self.params,
        dtrain,
        num_boost_round=num_boost_round,
        init_model=self.model,
        valid_sets=[dtrain],
        valid_names=["train"],
        verbose_eval=verbose_eval,
    )






















Configuration File

The configuration file is described in detail in the Workflow document. In order to integrate the custom model into Qlib, users need to modify the “model” field in the configuration file. The configuration describes which models to use and how we can initialize it.


	Example: The following example describes the model field of configuration file about the custom lightgbm model mentioned above, where module_path is the module path, class is the class name, and args is the hyperparameter passed into the __init__ method. All parameters in the field is passed to self._params by **kwargs in __init__ except loss = mse.


model:
    class: LGBModel
    module_path: qlib.contrib.model.gbdt
    args:
        loss: mse
        colsample_bytree: 0.8879
        learning_rate: 0.0421
        subsample: 0.8789
        lambda_l1: 205.6999
        lambda_l2: 580.9768
        max_depth: 8
        num_leaves: 210
        num_threads: 20












Users could find configuration file of the baselines of the Model in examples/benchmarks. All the configurations of different models are listed under the corresponding model folder.



Model Testing

Assuming that the configuration file is examples/benchmarks/LightGBM/workflow_config_lightgbm.yaml, users can run the following command to test the custom model:

cd examples  # Avoid running program under the directory contains `qlib`
qrun benchmarks/LightGBM/workflow_config_lightgbm.yaml






Note

qrun is a built-in command of Qlib.



Also, Model can also be tested as a single module. An example has been given in examples/workflow_by_code.ipynb.



Reference

To know more about Forecast Model, please refer to Forecast Model: Model Training & Prediction and Model API.





          

      

      

    

  

    
      
          
            
  
Workflow: Workflow Management


Introduction

The components in Qlib Framework are designed in a loosely-coupled way. Users could build their own Quant research workflow with these components like Example [https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py].

Besides, Qlib provides more user-friendly interfaces named qrun to automatically run the whole workflow defined by configuration. Running the whole workflow is called an execution.
With qrun, user can easily start an execution, which includes the following steps:


	
	Data

	
	Loading


	Processing


	Slicing










	
	Model

	
	Training and inference


	Saving & loading










	
	Evaluation

	
	Forecast signal analysis


	Backtest












For each execution, Qlib has a complete system to tracking all the information as well as artifacts generated during training, inference and evaluation phase. For more information about how Qlib handles this, please refer to the related document: Recorder: Experiment Management.



Complete Example

Before getting into details, here is a complete example of qrun, which defines the workflow in typical Quant research.
Below is a typical config file of qrun.

qlib_init:
    provider_uri: "~/.qlib/qlib_data/cn_data"
    region: cn
market: &market csi300
benchmark: &benchmark SH000300
data_handler_config: &data_handler_config
    start_time: 2008-01-01
    end_time: 2020-08-01
    fit_start_time: 2008-01-01
    fit_end_time: 2014-12-31
    instruments: *market
port_analysis_config: &port_analysis_config
    strategy:
        class: TopkDropoutStrategy
        module_path: qlib.contrib.strategy.strategy
        kwargs:
            topk: 50
            n_drop: 5
            signal: <PRED>
    backtest:
        limit_threshold: 0.095
        account: 100000000
        benchmark: *benchmark
        deal_price: close
        open_cost: 0.0005
        close_cost: 0.0015
        min_cost: 5
task:
    model:
        class: LGBModel
        module_path: qlib.contrib.model.gbdt
        kwargs:
            loss: mse
            colsample_bytree: 0.8879
            learning_rate: 0.0421
            subsample: 0.8789
            lambda_l1: 205.6999
            lambda_l2: 580.9768
            max_depth: 8
            num_leaves: 210
            num_threads: 20
    dataset:
        class: DatasetH
        module_path: qlib.data.dataset
        kwargs:
            handler:
                class: Alpha158
                module_path: qlib.contrib.data.handler
                kwargs: *data_handler_config
            segments:
                train: [2008-01-01, 2014-12-31]
                valid: [2015-01-01, 2016-12-31]
                test: [2017-01-01, 2020-08-01]
    record:
        - class: SignalRecord
          module_path: qlib.workflow.record_temp
          kwargs: {}
        - class: PortAnaRecord
          module_path: qlib.workflow.record_temp
          kwargs:
              config: *port_analysis_config





After saving the config into configuration.yaml, users could start the workflow and test their ideas with a single command below.

qrun configuration.yaml





If users want to use qrun under debug mode, please use the following command:

python -m pdb qlib/workflow/cli.py examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml






Note

qrun will be placed in your $PATH directory when installing Qlib.




Note

The symbol & in yaml file stands for an anchor of a field, which is useful when another fields include this parameter as part of the value. Taking the configuration file above as an example, users can directly change the value of market and benchmark without traversing the entire configuration file.





Configuration File

Let’s get into details of qrun in this section.
Before using qrun, users need to prepare a configuration file. The following content shows how to prepare each part of the configuration file.

The design logic of the configuration file is very simple. It predefines fixed workflows and provide this yaml interface to users to define how to initialize each component.
It follow the design of init_instance_by_config [https://github.com/microsoft/qlib/blob/2aee9e0145decc3e71def70909639b5e5a6f4b58/qlib/utils/__init__.py#L264] .  It defines the initialization of each component of Qlib, which typically include the class and the initialization arguments.

For example, the following yaml and code are equivalent.

model:
    class: LGBModel
    module_path: qlib.contrib.model.gbdt
    kwargs:
        loss: mse
        colsample_bytree: 0.8879
        learning_rate: 0.0421
        subsample: 0.8789
        lambda_l1: 205.6999
        lambda_l2: 580.9768
        max_depth: 8
        num_leaves: 210
        num_threads: 20





from qlib.contrib.model.gbdt import LGBModel
kwargs = {
    "loss": "mse" ,
    "colsample_bytree": 0.8879,
    "learning_rate": 0.0421,
    "subsample": 0.8789,
    "lambda_l1": 205.6999,
    "lambda_l2": 580.9768,
    "max_depth": 8,
    "num_leaves": 210,
    "num_threads": 20,
}
LGBModel(kwargs)






Qlib Init Section

At first, the configuration file needs to contain several basic parameters which will be used for qlib initialization.

provider_uri: "~/.qlib/qlib_data/cn_data"
region: cn





The meaning of each field is as follows:


	
	provider_uri

	Type: str. The URI of the Qlib data. For example, it could be the location where the data loaded by get_data.py are stored.







	
	region

	
	If region == “us”, Qlib will be initialized in US-stock mode.


	If region == “cn”, Qlib will be initialized in China-stock mode.





Note

The value of region should be aligned with the data stored in provider_uri.













Task Section

The task field in the configuration corresponds to a task, which contains the parameters of three different subsections: Model, Dataset and Record.


Model Section

In the task field, the model section describes the parameters of the model to be used for training and inference. For more information about the base Model class, please refer to Qlib Model.

model:
    class: LGBModel
    module_path: qlib.contrib.model.gbdt
    kwargs:
        loss: mse
        colsample_bytree: 0.8879
        learning_rate: 0.0421
        subsample: 0.8789
        lambda_l1: 205.6999
        lambda_l2: 580.9768
        max_depth: 8
        num_leaves: 210
        num_threads: 20





The meaning of each field is as follows:


	
	class

	Type: str. The name for the model class.







	
	module_path

	Type: str. The path for the model in qlib.







	
	kwargs

	The keywords arguments for the model. Please refer to the specific model implementation for more information: models [https://github.com/microsoft/qlib/blob/main/qlib/contrib/model].










Note

Qlib provides a util named: init_instance_by_config to initialize any class inside Qlib with the configuration includes the fields: class, module_path and kwargs.





Dataset Section

The dataset field describes the parameters for the Dataset module in Qlib as well those for the module DataHandler. For more information about the Dataset module, please refer to Qlib Data.

The keywords arguments configuration of the DataHandler is as follows:

data_handler_config: &data_handler_config
    start_time: 2008-01-01
    end_time: 2020-08-01
    fit_start_time: 2008-01-01
    fit_end_time: 2014-12-31
    instruments: *market





Users can refer to the document of DataHandler for more information about the meaning of each field in the configuration.

Here is the configuration for the Dataset module which will take care of data preprocessing and slicing during the training and testing phase.

dataset:
    class: DatasetH
    module_path: qlib.data.dataset
    kwargs:
        handler:
            class: Alpha158
            module_path: qlib.contrib.data.handler
            kwargs: *data_handler_config
        segments:
            train: [2008-01-01, 2014-12-31]
            valid: [2015-01-01, 2016-12-31]
            test: [2017-01-01, 2020-08-01]







Record Section

The record field is about the parameters the Record module in Qlib. Record is responsible for tracking training process and results such as information Coefficient (IC) and backtest in a standard format.

The following script is the configuration of backtest and the strategy used in backtest:

port_analysis_config: &port_analysis_config
    strategy:
        class: TopkDropoutStrategy
        module_path: qlib.contrib.strategy.strategy
        kwargs:
            topk: 50
            n_drop: 5
            signal: <PRED>
    backtest:
        limit_threshold: 0.095
        account: 100000000
        benchmark: *benchmark
        deal_price: close
        open_cost: 0.0005
        close_cost: 0.0015
        min_cost: 5





For more information about the meaning of each field in configuration of strategy and backtest, users can look up the documents: Strategy and Backtest.

Here is the configuration details of different Record Template such as SignalRecord and PortAnaRecord:

record:
    - class: SignalRecord
      module_path: qlib.workflow.record_temp
      kwargs: {}
    - class: PortAnaRecord
      module_path: qlib.workflow.record_temp
      kwargs:
        config: *port_analysis_config





For more information about the Record module in Qlib, user can refer to the related document: Record.







          

      

      

    

  

    
      
          
            
  
Data Layer: Data Framework & Usage


Introduction

Data Layer provides user-friendly APIs to manage and retrieve data. It provides high-performance data infrastructure.

It is designed for quantitative investment. For example, users could build formulaic alphas with Data Layer easily. Please refer to Building Formulaic Alphas for more details.

The introduction of Data Layer includes the following parts.


	Data Preparation


	Data API


	Data Loader


	Data Handler


	Dataset


	Cache


	Data and Cache File Structure




Here is a typical example of Qlib data workflow


	Users download data and converting data into Qlib format(with filename suffix .bin).  In this step, typically only some basic data are stored on disk(such as OHLCV).


	Creating some basic features based on Qlib’s expression Engine(e.g. “Ref($close, 60) / $close”, the return of last 60 trading days). Supported operators in the expression engine can be found here [https://github.com/microsoft/qlib/blob/main/qlib/data/ops.py]. This step is typically implemented in Qlib’s Data Loader [https://qlib.readthedocs.io/en/latest/component/data.html#data-loader] which is a component of Data Handler [https://qlib.readthedocs.io/en/latest/component/data.html#data-handler] .


	If users require more complicated data processing (e.g. data normalization),  Data Handler [https://qlib.readthedocs.io/en/latest/component/data.html#data-handler] support user-customized processors to process data(some predefined processors can be found here [https://github.com/microsoft/qlib/blob/main/qlib/data/dataset/processor.py]).  The processors are different from operators in expression engine. It is designed for some complicated data processing methods which is hard to supported in operators in expression engine.


	At last, Dataset [https://qlib.readthedocs.io/en/latest/component/data.html#dataset] is responsible to prepare model-specific dataset from the processed data of Data Handler






Data Preparation


Qlib Format Data

We’ve specially designed a data structure to manage financial data, please refer to the File storage design section in Qlib paper [https://arxiv.org/abs/2009.11189] for detailed information.
Such data will be stored with filename suffix .bin (We’ll call them .bin file, .bin format, or qlib format). .bin file is designed for scientific computing on finance data.

Qlib provides two different off-the-shelf datasets, which can be accessed through this link [https://github.com/microsoft/qlib/blob/main/qlib/contrib/data/handler.py]:








	Dataset

	US Market

	China Market





	Alpha360

	√

	√



	Alpha158

	√

	√






Also, Qlib provides a high-frequency dataset. Users can run a high-frequency dataset example through this link [https://github.com/microsoft/qlib/tree/main/examples/highfreq].



Qlib Format Dataset

Qlib has provided an off-the-shelf dataset in .bin format, users could use the script scripts/get_data.py to download the China-Stock dataset as follows. User can also use numpy to load .bin file to validate data.
The price volume data look different from the actual dealling price because of they are adjusted (adjusted price [https://www.investopedia.com/terms/a/adjusted_closing_price.asp]).  And then you may find that the adjusted price may be different from different data sources. This is because different data sources may vary in the way of adjusting prices. Qlib normalize the price on first trading day of each stock to 1 when adjusting them.
Users can leverage $factor to get the original trading price (e.g. $close / $factor to get the original close price).

Here are some discussions about the price adjusting of Qlib.


	https://github.com/microsoft/qlib/issues/991#issuecomment-1075252402




# download 1d
python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --region cn

# download 1min
python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/qlib_cn_1min --region cn --interval 1min





In addition to China-Stock data, Qlib also includes a US-Stock dataset, which can be downloaded with the following command:

python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/us_data --region us





After running the above command, users can find china-stock and us-stock data in Qlib format in the ~/.qlib/qlib_data/cn_data directory and ~/.qlib/qlib_data/us_data directory respectively.

Qlib also provides the scripts in scripts/data_collector to help users crawl the latest data on the Internet and convert it to qlib format.

When Qlib is initialized with this dataset, users could build and evaluate their own models with it.  Please refer to Initialization for more details.



Automatic update of daily frequency data


It is recommended that users update the data manually once (–trading_date 2021-05-25) and then set it to update automatically.

For more information refer to: yahoo collector [https://github.com/microsoft/qlib/tree/main/scripts/data_collector/yahoo#Automatic-update-of-daily-frequency-data]


	
	Automatic update of data to the “qlib” directory each trading day(Linux)

	
	use crontab: crontab -e


	set up timed tasks:

* * * * 1-5 python <script path> update_data_to_bin --qlib_data_1d_dir <user data dir>






	script path: scripts/data_collector/yahoo/collector.py














	Manual update of data


python scripts/data_collector/yahoo/collector.py update_data_to_bin --qlib_data_1d_dir <user data dir> --trading_date <start date> --end_date <end date>






	trading_date: start of trading day


	end_date: end of trading day(not included)
















Converting CSV Format into Qlib Format

Qlib has provided the script scripts/dump_bin.py to convert any data in CSV format into .bin files (Qlib format) as long as they are in the correct format.

Besides downloading the prepared demo data, users could download demo data directly from the Collector as follows for reference to the CSV format.
Here are some example:


	for daily data:

	python scripts/get_data.py download_data --file_name csv_data_cn.zip --target_dir ~/.qlib/csv_data/cn_data







	for 1min data:

	python scripts/data_collector/yahoo/collector.py download_data --source_dir ~/.qlib/stock_data/source/cn_1min --region CN --start 2021-05-20 --end 2021-05-23 --delay 0.1 --interval 1min --limit_nums 10









Users can also provide their own data in CSV format. However, the CSV data must satisfies following criterions:


	CSV file is named after a specific stock or the CSV file includes a column of the stock name



	Name the CSV file after a stock: SH600000.csv, AAPL.csv (not case sensitive).


	CSV file includes a column of the stock name. User must specify the column name when dumping the data. Here is an example:


python scripts/dump_bin.py dump_all ... --symbol_field_name symbol





where the data are in the following format:













	CSV file must includes a column for the date, and when dumping the data, user must specify the date column name. Here is an example:


python scripts/dump_bin.py dump_all ... --date_field_name date





where the data are in the following format:








Supposed that users prepare their CSV format data in the directory ~/.qlib/csv_data/my_data, they can run the following command to start the conversion.

python scripts/dump_bin.py dump_all --csv_path  ~/.qlib/csv_data/my_data --qlib_dir ~/.qlib/qlib_data/my_data --include_fields open,close,high,low,volume,factor





For other supported parameters when dumping the data into .bin file, users can refer to the information by running the following commands:

python dump_bin.py dump_all --help





After conversion, users can find their Qlib format data in the directory ~/.qlib/qlib_data/my_data.


Note

The arguments of –include_fields should correspond with the column names of CSV files. The columns names of dataset provided by Qlib should include open, close, high, low, volume and factor at least.


	
	open

	The adjusted opening price







	
	close

	The adjusted closing price







	
	high

	The adjusted highest price







	
	low

	The adjusted lowest price







	
	volume

	The adjusted trading volume







	
	factor

	The Restoration factor. Normally, factor = adjusted_price / original_price, adjusted price reference: split adjusted [https://www.investopedia.com/terms/s/splitadjusted.asp]









In the convention of Qlib data processing, open, close, high, low, volume, money and factor will be set to NaN if the stock is suspended.
If you want to use your own alpha-factor which can’t be calculate by OCHLV, like PE, EPS and so on, you could add it to the CSV files with OHCLV together and then dump it to the Qlib format data.





Stock Pool (Market)

Qlib defines stock pool [https://github.com/microsoft/qlib/blob/main/examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml#L4] as stock list and their date ranges. Predefined stock pools (e.g. csi300) may be imported as follows.

python collector.py --index_name CSI300 --qlib_dir <user qlib data dir> --method parse_instruments







Multiple Stock Modes

Qlib now provides two different stock modes for users: China-Stock Mode & US-Stock Mode. Here are some different settings of these two modes:








	Region

	Trade Unit

	Limit Threshold





	China

	100

	0.099



	US

	1

	None






The trade unit defines the unit number of stocks can be used in a trade, and the limit threshold defines the bound set to the percentage of ups and downs of a stock.


	
	If users use Qlib in china-stock mode, china-stock data is required. Users can use Qlib in china-stock mode according to the following steps:

	
	Download china-stock in qlib format, please refer to section Qlib Format Dataset.


	
	Initialize Qlib in china-stock mode

	Supposed that users download their Qlib format data in the directory ~/.qlib/qlib_data/cn_data. Users only need to initialize Qlib as follows.

from qlib.constant import REG_CN
qlib.init(provider_uri='~/.qlib/qlib_data/cn_data', region=REG_CN)



















	
	If users use Qlib in US-stock mode, US-stock data is required. Qlib also provides a script to download US-stock data. Users can use Qlib in US-stock mode according to the following steps:

	
	Download us-stock in qlib format, please refer to section Qlib Format Dataset.


	
	Initialize Qlib in US-stock mode

	Supposed that users prepare their Qlib format data in the directory ~/.qlib/qlib_data/us_data. Users only need to initialize Qlib as follows.

from qlib.config import REG_US
qlib.init(provider_uri='~/.qlib/qlib_data/us_data', region=REG_US)






















Note

PRs for new data source are highly welcome! Users could commit the code to crawl data as a PR like the examples here [https://github.com/microsoft/qlib/tree/main/scripts]. And then we will use the code to create data cache on our server which other users could use directly.






Data API


Data Retrieval

Users can use APIs in qlib.data to retrieve data, please refer to Data Retrieval.



Feature

Qlib provides Feature and ExpressionOps to fetch the features according to users’ needs.


	
	Feature

	Load data from the data provider. User can get the features like $high, $low, $open, $close, .etc, which should correspond with the arguments of –include_fields, please refer to section Converting CSV Format into Qlib Format.







	
	ExpressionOps

	ExpressionOps will use operator for feature construction.
To know more about  Operator, please refer to Operator API.
Also, Qlib supports users to define their own custom Operator, an example has been given in tests/test_register_ops.py.









To know more about  Feature, please refer to Feature API.



Filter

Qlib provides NameDFilter and ExpressionDFilter to filter the instruments according to users’ needs.


	
	NameDFilter

	Name dynamic instrument filter. Filter the instruments based on a regulated name format. A name rule regular expression is required.







	
	ExpressionDFilter

	Expression dynamic instrument filter. Filter the instruments based on a certain expression. An expression rule indicating a certain feature field is required.


	basic features filter: rule_expression = ‘$close/$open>5’


	cross-sectional features filter : rule_expression = ‘$rank($close)<10’


	time-sequence features filter: rule_expression = ‘$Ref($close, 3)>100’












Here is a simple example showing how to use filter in a basic Qlib workflow configuration file:

filter: &filter
    filter_type: ExpressionDFilter
    rule_expression: "Ref($close, -2) / Ref($close, -1) > 1"
    filter_start_time: 2010-01-01
    filter_end_time: 2010-01-07
    keep: False

data_handler_config: &data_handler_config
    start_time: 2010-01-01
    end_time: 2021-01-22
    fit_start_time: 2010-01-01
    fit_end_time: 2015-12-31
    instruments: *market
    filter_pipe: [*filter]





To know more about Filter, please refer to Filter API.



Reference

To know more about Data API, please refer to Data API.




Data Loader

Data Loader in Qlib is designed to load raw data from the original data source. It will be loaded and used in the Data Handler module.


QlibDataLoader

The QlibDataLoader class in Qlib is such an interface that allows users to load raw data from the Qlib data source.



StaticDataLoader

The StaticDataLoader class in Qlib is such an interface that allows users to load raw data from file or as provided.



Interface

Here are some interfaces of the QlibDataLoader class:


	
class qlib.data.dataset.loader.DataLoader

	DataLoader is designed for loading raw data from original data source.


	
load(instruments, start_time=None, end_time=None) → pandas.core.frame.DataFrame

	load the data as pd.DataFrame.

Example of the data (The multi-index of the columns is optional.):


                        feature                                                             label
                        $close     $volume     Ref($close, 1)  Mean($close, 3)  $high-$low  LABEL0
datetime    instrument
2010-01-04  SH600000    81.807068  17145150.0       83.737389        83.016739    2.741058  0.0032
            SH600004    13.313329  11800983.0       13.313329        13.317701    0.183632  0.0042
            SH600005    37.796539  12231662.0       38.258602        37.919757    0.970325  0.0289









	Parameters

	
	instruments (str or dict) – it can either be the market name or the config file of instruments generated by InstrumentProvider.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.






	Returns

	data load from the under layer source



	Return type

	pd.DataFrame















API

To know more about Data Loader, please refer to Data Loader API.




Data Handler

The Data Handler module in Qlib is designed to handler those common data processing methods which will be used by most of the models.

Users can use Data Handler in an automatic workflow by qrun, refer to Workflow: Workflow Management for more details.


DataHandlerLP

In addition to use Data Handler in an automatic workflow with qrun, Data Handler can be used as an independent module, by which users can easily preprocess data (standardization, remove NaN, etc.) and build datasets.

In order to achieve so, Qlib provides a base class qlib.data.dataset.DataHandlerLP. The core idea of this class is that: we will have some learnable Processors which can learn the parameters of data processing(e.g., parameters for zscore normalization). When new data comes in, these trained Processors can then process the new data and thus processing real-time data in an efficient way becomes possible. More information about Processors will be listed in the next subsection.



Interface

Here are some important interfaces that DataHandlerLP provides:


	
class qlib.data.dataset.handler.DataHandlerLP(instruments=None, start_time=None, end_time=None, data_loader: Union[dict, str, qlib.data.dataset.loader.DataLoader] = None, infer_processors: List[T] = [], learn_processors: List[T] = [], shared_processors: List[T] = [], process_type='append', drop_raw=False, **kwargs)

	DataHandler with (L)earnable (P)rocessor

This handler will produce three pieces of data in pd.DataFrame format.


	DK_R / self._data: the raw data loaded from the loader


	DK_I / self._infer: the data processed for inference


	DK_L / self._learn: the data processed for learning model.




The motivation of using different processor workflows for learning and inference
Here are some examples.


	The instrument universe for learning and inference may be different.


	The processing of some samples may rely on label (for example, some samples hit the limit may need extra processing or be dropped).



	These processors only apply to the learning phase.











Tips for data handler


	To reduce the memory cost



	drop_raw=True: this will modify the data inplace on raw data;









	Please note processed data like self._infer or self._learn are concepts different from segments in Qlib’s Dataset like “train” and “test”



	Processed data like self._infer or self._learn are underlying data processed with different processors


	segments in Qlib’s Dataset like “train” and “test” are simply the time segmentations when querying data(“train” are often before “test” in time-series).


	For example, you can query data._infer processed by infer_processors in the “train” time segmentation.












	
__init__(instruments=None, start_time=None, end_time=None, data_loader: Union[dict, str, qlib.data.dataset.loader.DataLoader] = None, infer_processors: List[T] = [], learn_processors: List[T] = [], shared_processors: List[T] = [], process_type='append', drop_raw=False, **kwargs)

	
	Parameters

	
	infer_processors (list) – 
	list of <description info> of processors to generate data for inference


	example of <description info>:







	learn_processors (list) – similar to infer_processors, but for generating data for learning models


	process_type (str) – PTYPE_I = ‘independent’


	self._infer will be processed by infer_processors


	self._learn will be processed by learn_processors




PTYPE_A = ‘append’


	self._infer will be processed by infer_processors


	self._learn will be processed by infer_processors + learn_processors


	(e.g. self._infer processed by learn_processors )











	drop_raw (bool) – Whether to drop the raw data













	
fit()

	fit data without processing the data






	
fit_process_data()

	fit and process data

The input of the fit will be the output of the previous processor






	
process_data(with_fit: bool = False)

	process_data data. Fun processor.fit if necessary

Notation: (data)  [processor]

# data processing flow of self.process_type == DataHandlerLP.PTYPE_I

(self._data)-[shared_processors]-(_shared_df)-[learn_processors]-(_learn_df)
                                       \
                                        -[infer_processors]-(_infer_df)





# data processing flow of self.process_type == DataHandlerLP.PTYPE_A

(self._data)-[shared_processors]-(_shared_df)-[infer_processors]-(_infer_df)-[learn_processors]-(_learn_df)






	Parameters

	with_fit (bool) – The input of the fit will be the output of the previous processor










	
config(processor_kwargs: dict = None, **kwargs)

	configuration of data.
# what data to be loaded from data source

This method will be used when loading pickled handler from dataset.
The data will be initialized with different time range.






	
setup_data(init_type: str = 'fit_seq', **kwargs)

	Set up the data in case of running initialization for multiple time


	Parameters

	
	init_type (str) – The type IT_* listed above.


	enable_cache (bool) – default value is false:


	if enable_cache == True:


the processed data will be saved on disk, and handler will load the cached data from the disk directly
when we call init next time






















	
fetch(selector: Union[pandas._libs.tslibs.timestamps.Timestamp, slice, str] = slice(None, None, None), level: Union[str, int] = 'datetime', col_set='__all', data_key: typing_extensions.Literal['raw', 'infer', 'learn'][raw, infer, learn] = 'infer', squeeze: bool = False, proc_func: Callable = None) → pandas.core.frame.DataFrame

	fetch data from underlying data source


	Parameters

	
	selector (Union[pd.Timestamp, slice, str]) – describe how to select data by index.


	level (Union[str, int]) – which index level to select the data.


	col_set (str) – select a set of meaningful columns.(e.g. features, columns).


	data_key (str) – the data to fetch:  DK_*.


	proc_func (Callable) – please refer to the doc of DataHandler.fetch






	Returns

	



	Return type

	pd.DataFrame










	
get_cols(col_set='__all', data_key: typing_extensions.Literal['raw', 'infer', 'learn'][raw, infer, learn] = 'infer') → list

	get the column names


	Parameters

	
	col_set (str) – select a set of meaningful columns.(e.g. features, columns).


	data_key (DATA_KEY_TYPE) – the data to fetch:  DK_*.






	Returns

	list of column names



	Return type

	list










	
classmethod cast(handler: qlib.data.dataset.handler.DataHandlerLP) → qlib.data.dataset.handler.DataHandlerLP

	Motivation


	A user creates a datahandler in his customized package. Then he wants to share the processed handler to
other users without introduce the package dependency and complicated data processing logic.


	This class make it possible by casting the class to DataHandlerLP and only keep the processed data





	Parameters

	handler (DataHandlerLP) – A subclass of DataHandlerLP



	Returns

	the converted processed data



	Return type

	DataHandlerLP










	
classmethod from_df(df: pandas.core.frame.DataFrame) → qlib.data.dataset.handler.DataHandlerLP

	Motivation:
- When user want to get a quick data handler.

The created data handler will have only one shared Dataframe without processors.
After creating the handler, user may often want to dump the handler for reuse
Here is a typical use case

from qlib.data.dataset import DataHandlerLP
dh = DataHandlerLP.from_df(df)
dh.to_pickle(fname, dump_all=True)





TODO:
- The StaticDataLoader is quite slow. It don’t have to copy the data again…









If users want to load features and labels by config, users can define a new handler and call the static method parse_config_to_fields of qlib.contrib.data.handler.Alpha158.

Also, users can pass qlib.contrib.data.processor.ConfigSectionProcessor that provides some preprocess methods for features defined by config into the new handler.



Processor

The Processor module in Qlib is designed to be learnable and it is responsible for handling data processing such as normalization and drop none/nan features/labels.

Qlib provides the following Processors:


	DropnaProcessor: processor that drops N/A features.


	DropnaLabel: processor that drops N/A labels.


	TanhProcess: processor that uses tanh to process noise data.


	ProcessInf: processor that handles infinity values, it will be replaces by the mean of the column.


	Fillna: processor that handles N/A values, which will fill the N/A value by 0 or other given number.


	MinMaxNorm: processor that applies min-max normalization.


	ZscoreNorm: processor that applies z-score normalization.


	RobustZScoreNorm: processor that applies robust z-score normalization.


	CSZScoreNorm: processor that applies cross sectional z-score normalization.


	CSRankNorm: processor that applies cross sectional rank normalization.


	CSZFillna: processor that fills N/A values in a cross sectional way by the mean of the column.




Users can also create their own processor by inheriting the base class of Processor. Please refer to the implementation of all the processors for more information (Processor Link [https://github.com/microsoft/qlib/blob/main/qlib/data/dataset/processor.py]).

To know more about Processor, please refer to Processor API.



Example

Data Handler can be run with qrun by modifying the configuration file, and can also be used as a single module.

Know more about how to run Data Handler with qrun, please refer to Workflow: Workflow Management

Qlib provides implemented data handler Alpha158. The following example shows how to run Alpha158 as a single module.


Note

Users need to initialize Qlib with qlib.init first, please refer to initialization.



import qlib
from qlib.contrib.data.handler import Alpha158

data_handler_config = {
    "start_time": "2008-01-01",
    "end_time": "2020-08-01",
    "fit_start_time": "2008-01-01",
    "fit_end_time": "2014-12-31",
    "instruments": "csi300",
}

if __name__ == "__main__":
    qlib.init()
    h = Alpha158(**data_handler_config)

    # get all the columns of the data
    print(h.get_cols())

    # fetch all the labels
    print(h.fetch(col_set="label"))

    # fetch all the features
    print(h.fetch(col_set="feature"))






Note

In the Alpha158, Qlib uses the label Ref($close, -2)/Ref($close, -1) - 1 that means the change from T+1 to T+2, rather than Ref($close, -1)/$close - 1, of which the reason is that when getting the T day close price of a china stock, the stock can be bought on T+1 day and sold on T+2 day.





API

To know more about Data Handler, please refer to Data Handler API.




Dataset

The Dataset module in Qlib aims to prepare data for model training and inferencing.

The motivation of this module is that we want to maximize the flexibility of different models to handle data that are suitable for themselves. This module gives the model the flexibility to process their data in an unique way. For instance, models such as GBDT may work well on data that contains nan or None value, while neural networks such as MLP will break down on such data.

If user’s model need process its data in a different way, user could implement his own Dataset class. If the model’s
data processing is not special, DatasetH can be used directly.

The DatasetH class is the dataset with Data Handler. Here is the most important interface of the class:


	
class qlib.data.dataset.__init__.DatasetH(handler: Union[Dict[KT, VT], qlib.data.dataset.handler.DataHandler], segments: Dict[str, Tuple], fetch_kwargs: Dict[KT, VT] = {}, **kwargs)

	Dataset with Data(H)andler

User should try to put the data preprocessing functions into handler.
Only following data processing functions should be placed in Dataset:


	The processing is related to specific model.


	The processing is related to data split.





	
__init__(handler: Union[Dict[KT, VT], qlib.data.dataset.handler.DataHandler], segments: Dict[str, Tuple], fetch_kwargs: Dict[KT, VT] = {}, **kwargs)

	Setup the underlying data.


	Parameters

	
	handler (Union[dict, DataHandler]) – handler could be:


	instance of DataHandler


	config of DataHandler.  Please refer to DataHandler







	segments (dict) – Describe the options to segment the data.
Here are some examples:













	
config(handler_kwargs: dict = None, **kwargs)

	Initialize the DatasetH


	Parameters

	
	handler_kwargs (dict) – Config of DataHandler, which could include the following arguments:


	arguments of DataHandler.conf_data, such as ‘instruments’, ‘start_time’ and ‘end_time’.







	kwargs (dict) – Config of DatasetH, such as


	
	segmentsdict

	Config of segments which is same as ‘segments’ in self.__init__























	
setup_data(handler_kwargs: dict = None, **kwargs)

	Setup the Data


	Parameters

	handler_kwargs (dict) – init arguments of DataHandler, which could include the following arguments:


	init_type : Init Type of Handler


	enable_cache : whether to enable cache















	
prepare(segments: Union[List[str], Tuple[str], str, slice, pandas.core.indexes.base.Index], col_set='__all', data_key='infer', **kwargs) → Union[List[pandas.core.frame.DataFrame], pandas.core.frame.DataFrame]

	Prepare the data for learning and inference.


	Parameters

	
	segments (Union[List[Text], Tuple[Text], Text, slice]) – Describe the scope of the data to be prepared
Here are some examples:


	’train’


	[‘train’, ‘valid’]







	col_set (str) – The col_set will be passed to self.handler when fetching data.
TODO: make it automatic:


	select DK_I for test data


	select DK_L for training data.







	data_key (str) – The data to fetch:  DK_*
Default is DK_I, which indicate fetching data for inference.


	kwargs – 
	The parameters that kwargs may contain:

	
	flt_colstr

	It only exists in TSDatasetH, can be used to add a column of data(True or False) to filter data.
This parameter is only supported when it is an instance of TSDatasetH.
















	Returns

	



	Return type

	Union[List[pd.DataFrame], pd.DataFrame]



	Raises

	NotImplementedError:














API

To know more about Dataset, please refer to Dataset API.




Cache

Cache is an optional module that helps accelerate providing data by saving some frequently-used data as cache file. Qlib provides a Memcache class to cache the most-frequently-used data in memory, an inheritable ExpressionCache class, and an inheritable DatasetCache class.


Global Memory Cache

Memcache is a global memory cache mechanism that composes of three MemCacheUnit instances to cache Calendar, Instruments, and Features. The MemCache is defined globally in cache.py as H. Users can use H[‘c’], H[‘i’], H[‘f’] to get/set memcache.


	
class qlib.data.cache.MemCacheUnit(*args, **kwargs)

	Memory Cache Unit.


	
__init__(*args, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.






	
limited

	whether memory cache is limited










	
class qlib.data.cache.MemCache(mem_cache_size_limit=None, limit_type='length')

	Memory cache.


	
__init__(mem_cache_size_limit=None, limit_type='length')

	
	Parameters

	
	mem_cache_size_limit – cache max size.


	limit_type – length or sizeof; length(call fun: len), size(call fun: sys.getsizeof).


















ExpressionCache

ExpressionCache is a cache mechanism that saves expressions such as Mean($close, 5). Users can inherit this base class to define their own cache mechanism that saves expressions according to the following steps.


	Override self._uri method to define how the cache file path is generated


	Override self._expression method to define what data will be cached and how to cache it.




The following shows the details about the interfaces:


	
class qlib.data.cache.ExpressionCache(provider)

	Expression cache mechanism base class.

This class is used to wrap expression provider with self-defined expression cache mechanism.


Note

Override the _uri and _expression method to create your own expression cache mechanism.




	
expression(instrument, field, start_time, end_time, freq)

	Get expression data.


Note

Same interface as expression method in expression provider








	
update(cache_uri: Union[str, pathlib.Path], freq: str = 'day')

	Update expression cache to latest calendar.

Override this method to define how to update expression cache corresponding to users’ own cache mechanism.


	Parameters

	
	cache_uri (str or Path) – the complete uri of expression cache file (include dir path).


	freq (str) – 






	Returns

	0(successful update)/ 1(no need to update)/ 2(update failure).



	Return type

	int













Qlib has currently provided implemented disk cache DiskExpressionCache which inherits from ExpressionCache . The expressions data will be stored in the disk.



DatasetCache

DatasetCache is a cache mechanism that saves datasets. A certain dataset is regulated by a stock pool configuration (or a series of instruments, though not recommended), a list of expressions or static feature fields, the start time, and end time for the collected features and the frequency. Users can inherit this base class to define their own cache mechanism that saves datasets according to the following steps.


	Override self._uri method to define how their cache file path is generated


	Override self._expression method to define what data will be cached and how to cache it.




The following shows the details about the interfaces:


	
class qlib.data.cache.DatasetCache(provider)

	Dataset cache mechanism base class.

This class is used to wrap dataset provider with self-defined dataset cache mechanism.


Note

Override the _uri and _dataset method to create your own dataset cache mechanism.




	
dataset(instruments, fields, start_time=None, end_time=None, freq='day', disk_cache=1, inst_processors=[])

	Get feature dataset.


Note

Same interface as dataset method in dataset provider




Note

The server use redis_lock to make sure
read-write conflicts will not be triggered
but client readers are not considered.








	
update(cache_uri: Union[str, pathlib.Path], freq: str = 'day')

	Update dataset cache to latest calendar.

Override this method to define how to update dataset cache corresponding to users’ own cache mechanism.


	Parameters

	
	cache_uri (str or Path) – the complete uri of dataset cache file (include dir path).


	freq (str) – 






	Returns

	0(successful update)/ 1(no need to update)/ 2(update failure)



	Return type

	int










	
static cache_to_origin_data(data, fields)

	cache data to origin data


	Parameters

	
	data – pd.DataFrame, cache data.


	fields – feature fields.






	Returns

	pd.DataFrame.










	
static normalize_uri_args(instruments, fields, freq)

	normalize uri args









Qlib has currently provided implemented disk cache DiskDatasetCache which inherits from DatasetCache . The datasets’ data will be stored in the disk.




Data and Cache File Structure

We’ve specially designed a file structure to manage data and cache, please refer to the File storage design section in Qlib paper [https://arxiv.org/abs/2009.11189] for detailed information. The file structure of data and cache is listed as follows.





          

      

      

    

  

    
      
          
            
  
Forecast Model: Model Training & Prediction


Introduction

Forecast Model is designed to make the prediction score about stocks. Users can use the Forecast Model in an automatic workflow by qrun, please refer to Workflow: Workflow Management.

Because the components in Qlib are designed in a loosely-coupled way, Forecast Model can be used as an independent module also.



Base Class & Interface

Qlib provides a base class qlib.model.base.Model from which all models should inherit.

The base class provides the following interfaces:


	
class qlib.model.base.Model

	Learnable Models


	
fit(dataset: qlib.data.dataset.Dataset, reweighter: qlib.data.dataset.weight.Reweighter)

	Learn model from the base model


Note

The attribute names of learned model should not start with ‘_’. So that the model could be
dumped to disk.



The following code example shows how to retrieve x_train, y_train and w_train from the dataset:


# get features and labels
df_train, df_valid = dataset.prepare(
    ["train", "valid"], col_set=["feature", "label"], data_key=DataHandlerLP.DK_L
)
x_train, y_train = df_train["feature"], df_train["label"]
x_valid, y_valid = df_valid["feature"], df_valid["label"]

# get weights
try:
    wdf_train, wdf_valid = dataset.prepare(["train", "valid"], col_set=["weight"],
                                           data_key=DataHandlerLP.DK_L)
    w_train, w_valid = wdf_train["weight"], wdf_valid["weight"]
except KeyError as e:
    w_train = pd.DataFrame(np.ones_like(y_train.values), index=y_train.index)
    w_valid = pd.DataFrame(np.ones_like(y_valid.values), index=y_valid.index)









	Parameters

	dataset (Dataset) – dataset will generate the processed data from model training.










	
predict(dataset: qlib.data.dataset.Dataset, segment: Union[str, slice] = 'test') → object

	give prediction given Dataset


	Parameters

	
	dataset (Dataset) – dataset will generate the processed dataset from model training.


	segment (Text or slice) – dataset will use this segment to prepare data. (default=test)






	Returns

	



	Return type

	Prediction results with certain type such as pandas.Series.













Qlib also provides a base class qlib.model.base.ModelFT, which includes the method for finetuning the model.

For other interfaces such as finetune, please refer to Model API.



Example

Qlib’s Model Zoo includes models such as LightGBM, MLP, LSTM, etc.. These models are treated as the baselines of Forecast Model. The following steps show how to run`` LightGBM`` as an independent module.


	Initialize Qlib with qlib.init first, please refer to Initialization.


	
	Run the following code to get the prediction score pred_score

	from qlib.contrib.model.gbdt import LGBModel
from qlib.contrib.data.handler import Alpha158
from qlib.utils import init_instance_by_config, flatten_dict
from qlib.workflow import R
from qlib.workflow.record_temp import SignalRecord, PortAnaRecord

market = "csi300"
benchmark = "SH000300"

data_handler_config = {
    "start_time": "2008-01-01",
    "end_time": "2020-08-01",
    "fit_start_time": "2008-01-01",
    "fit_end_time": "2014-12-31",
    "instruments": market,
}

task = {
    "model": {
        "class": "LGBModel",
        "module_path": "qlib.contrib.model.gbdt",
        "kwargs": {
            "loss": "mse",
            "colsample_bytree": 0.8879,
            "learning_rate": 0.0421,
            "subsample": 0.8789,
            "lambda_l1": 205.6999,
            "lambda_l2": 580.9768,
            "max_depth": 8,
            "num_leaves": 210,
            "num_threads": 20,
        },
    },
    "dataset": {
        "class": "DatasetH",
        "module_path": "qlib.data.dataset",
        "kwargs": {
            "handler": {
                "class": "Alpha158",
                "module_path": "qlib.contrib.data.handler",
                "kwargs": data_handler_config,
            },
            "segments": {
                "train": ("2008-01-01", "2014-12-31"),
                "valid": ("2015-01-01", "2016-12-31"),
                "test": ("2017-01-01", "2020-08-01"),
            },
        },
    },
}

# model initiaiton
model = init_instance_by_config(task["model"])
dataset = init_instance_by_config(task["dataset"])

# start exp
with R.start(experiment_name="workflow"):
    # train
    R.log_params(**flatten_dict(task))
    model.fit(dataset)

    # prediction
    recorder = R.get_recorder()
    sr = SignalRecord(model, dataset, recorder)
    sr.generate()






Note

Alpha158 is the data handler provided by Qlib, please refer to Data Handler.
SignalRecord is the Record Template in Qlib, please refer to Workflow.











Also, the above example has been given in examples/train_backtest_analyze.ipynb.
Technically, the meaning of the model prediction depends on the label setting designed by user.
By default, the meaning of the score is normally the rating of the instruments by the forecasting model. The higher the score, the more profit the instruments.



Custom Model

Qlib supports custom models. If users are interested in customizing their own models and integrating the models into Qlib, please refer to Custom Model Integration.



API

Please refer to Model API.





          

      

      

    

  

    
      
          
            
  
Portfolio Strategy: Portfolio Management


Introduction

Portfolio Strategy is designed to adopt different portfolio strategies, which means that users can adopt different algorithms to generate investment portfolios based on the prediction scores of the Forecast Model. Users can use the Portfolio Strategy in an automatic workflow by Workflow module, please refer to Workflow: Workflow Management.

Because the components in Qlib are designed in a loosely-coupled way, Portfolio Strategy can be used as an independent module also.

Qlib provides several implemented portfolio strategies. Also, Qlib supports custom strategy, users can customize strategies according to their own requirements.

After users specifying the models(forecasting signals) and strategies, running backtest will help users to check the performance of a custom model(forecasting signals)/strategy.



Base Class & Interface


BaseStrategy

Qlib provides a base class qlib.strategy.base.BaseStrategy. All strategy classes need to inherit the base class and implement its interface.


	
	generate_trade_decision

	generate_trade_decision is a key interface that generates trade decisions in each trading bar.
The frequency to call this method depends on the executor frequency(“time_per_step”=”day” by default). But the trading frequency can be decided by users’ implementation.
For example, if the user wants to trading in weekly while the time_per_step is “day” in executor, user can return non-empty TradeDecision weekly(otherwise return empty like this [https://github.com/microsoft/qlib/blob/main/qlib/contrib/strategy/signal_strategy.py#L132] ).









Users can inherit BaseStrategy to customize their strategy class.



WeightStrategyBase

Qlib also provides a class qlib.contrib.strategy.WeightStrategyBase that is a subclass of BaseStrategy.

WeightStrategyBase only focuses on the target positions, and automatically generates an order list based on positions. It provides the generate_target_weight_position interface.


	
	generate_target_weight_position

	
	According to the current position and trading date to generate the target position. The cash is not considered in
the output weight distribution.


	Return the target position.





Note

Here the target position means the target percentage of total assets.











WeightStrategyBase implements the interface generate_order_list, whose processions is as follows.


	Call generate_target_weight_position method to generate the target position.


	Generate the target amount of stocks from the target position.


	Generate the order list from the target amount




Users can inherit WeightStrategyBase and implement the interface generate_target_weight_position to customize their strategy class, which only focuses on the target positions.




Implemented Strategy

Qlib provides a implemented strategy classes named TopkDropoutStrategy.


TopkDropoutStrategy

TopkDropoutStrategy is a subclass of BaseStrategy and implement the interface generate_order_list whose process is as follows.


	Adopt the Topk-Drop algorithm to calculate the target amount of each stock



Note

There are two parameters for the Topk-Drop algorithm:


	Topk: The number of stocks held


	Drop: The number of stocks sold on each trading day




In general, the number of stocks currently held is Topk, with the exception of being zero at the beginning period of trading.
For each trading day, let $d$ be the number of the instruments currently held and with a rank $gt K$ when ranked by the prediction scores from high to low.
Then d number of stocks currently held with the worst prediction score will be sold, and the same number of unheld stocks with the best prediction score will be bought.

In general, $d=$`Drop`, especially when the pool of the candidate instruments is large, $K$ is large, and Drop is small.

In most cases, TopkDrop algorithm sells and buys Drop stocks every trading day, which yields a turnover rate of 2$times$`Drop`/$K$.

The following images illustrate a typical scenario.

[image: Topk-Drop]







	Generate the order list from the target amount






EnhancedIndexingStrategy

EnhancedIndexingStrategy Enhanced indexing combines the arts of active management and passive management,
with the aim of outperforming a benchmark index (e.g., S&P 500) in terms of portfolio return while controlling
the risk exposure (a.k.a. tracking error).

For more information, please refer to qlib.contrib.strategy.signal_strategy.EnhancedIndexingStrategy
and qlib.contrib.strategy.optimizer.enhanced_indexing.EnhancedIndexingOptimizer.




Usage & Example

First, user can create a model to get trading signals(the variable name is pred_score in following cases).


Prediction Score

The prediction score is a pandas DataFrame. Its index is <datetime(pd.Timestamp), instrument(str)> and it must
contains a score column.

A prediction sample is shown as follows.

  datetime instrument     score
2019-01-04   SH600000 -0.505488
2019-01-04   SZ002531 -0.320391
2019-01-04   SZ000999  0.583808
2019-01-04   SZ300569  0.819628
2019-01-04   SZ001696 -0.137140
             ...            ...
2019-04-30   SZ000996 -1.027618
2019-04-30   SH603127  0.225677
2019-04-30   SH603126  0.462443
2019-04-30   SH603133 -0.302460
2019-04-30   SZ300760 -0.126383





Forecast Model module can make predictions, please refer to Forecast Model: Model Training & Prediction.

Normally, the prediction score is the output of the models. But some models are learned from a label with a different scale. So the scale of the prediction score may be different from your expectation(e.g. the return of instruments).

Qlib didn’t add a step to scale the prediction score to a unified scale due to the following reasons.
- Because not every trading strategy cares about the scale(e.g. TopkDropoutStrategy only cares about the order).  So the strategy is responsible for rescaling the prediction score(e.g. some portfolio-optimization-based strategies may require a meaningful scale).
- The model has the flexibility to define the target, loss, and data processing. So we don’t think there is a silver bullet to rescale it back directly barely based on the model’s outputs. If you want to scale it back to some meaningful values(e.g. stock returns.), an intuitive solution is to create a regression model for the model’s recent outputs and your recent target values.



Running backtest


	In most cases, users could backtest their portfolio management strategy  with backtest_daily.


from pprint import pprint

import qlib
import pandas as pd
from qlib.utils.time import Freq
from qlib.utils import flatten_dict
from qlib.contrib.evaluate import backtest_daily
from qlib.contrib.evaluate import risk_analysis
from qlib.contrib.strategy import TopkDropoutStrategy

# init qlib
qlib.init(provider_uri=<qlib data dir>)

CSI300_BENCH = "SH000300"
STRATEGY_CONFIG = {
    "topk": 50,
    "n_drop": 5,
    # pred_score, pd.Series
    "signal": pred_score,
}


strategy_obj = TopkDropoutStrategy(**STRATEGY_CONFIG)
report_normal, positions_normal = backtest_daily(
    start_time="2017-01-01", end_time="2020-08-01", strategy=strategy_obj
)
analysis = dict()
# default frequency will be daily (i.e. "day")
analysis["excess_return_without_cost"] = risk_analysis(report_normal["return"] - report_normal["bench"])
analysis["excess_return_with_cost"] = risk_analysis(report_normal["return"] - report_normal["bench"] - report_normal["cost"])

analysis_df = pd.concat(analysis)  # type: pd.DataFrame
pprint(analysis_df)










	If users would like to control their strategies in a more detailed(e.g. users have a more advanced version of executor), user could follow this example.


from pprint import pprint

import qlib
import pandas as pd
from qlib.utils.time import Freq
from qlib.utils import flatten_dict
from qlib.backtest import backtest, executor
from qlib.contrib.evaluate import risk_analysis
from qlib.contrib.strategy import TopkDropoutStrategy

# init qlib
qlib.init(provider_uri=<qlib data dir>)

CSI300_BENCH = "SH000300"
# Benchmark is for calculating the excess return of your strategy.
# Its data format will be like **ONE normal instrument**.
# For example, you can query its data with the code below
# `D.features(["SH000300"], ["$close"], start_time='2010-01-01', end_time='2017-12-31', freq='day')`
# It is different from the argument `market`, which indicates a universe of stocks (e.g. **A SET** of stocks like csi300)
# For example, you can query all data from a stock market with the code below.
# ` D.features(D.instruments(market='csi300'), ["$close"], start_time='2010-01-01', end_time='2017-12-31', freq='day')`

FREQ = "day"
STRATEGY_CONFIG = {
    "topk": 50,
    "n_drop": 5,
    # pred_score, pd.Series
    "signal": pred_score,
}

EXECUTOR_CONFIG = {
    "time_per_step": "day",
    "generate_portfolio_metrics": True,
}

backtest_config = {
    "start_time": "2017-01-01",
    "end_time": "2020-08-01",
    "account": 100000000,
    "benchmark": CSI300_BENCH,
    "exchange_kwargs": {
        "freq": FREQ,
        "limit_threshold": 0.095,
        "deal_price": "close",
        "open_cost": 0.0005,
        "close_cost": 0.0015,
        "min_cost": 5,
    },
}

# strategy object
strategy_obj = TopkDropoutStrategy(**STRATEGY_CONFIG)
# executor object
executor_obj = executor.SimulatorExecutor(**EXECUTOR_CONFIG)
# backtest
portfolio_metric_dict, indicator_dict = backtest(executor=executor_obj, strategy=strategy_obj, **backtest_config)
analysis_freq = "{0}{1}".format(*Freq.parse(FREQ))
# backtest info
report_normal, positions_normal = portfolio_metric_dict.get(analysis_freq)

# analysis
analysis = dict()
analysis["excess_return_without_cost"] = risk_analysis(
    report_normal["return"] - report_normal["bench"], freq=analysis_freq
)
analysis["excess_return_with_cost"] = risk_analysis(
    report_normal["return"] - report_normal["bench"] - report_normal["cost"], freq=analysis_freq
)

analysis_df = pd.concat(analysis)  # type: pd.DataFrame
# log metrics
analysis_dict = flatten_dict(analysis_df["risk"].unstack().T.to_dict())
# print out results
pprint(f"The following are analysis results of benchmark return({analysis_freq}).")
pprint(risk_analysis(report_normal["bench"], freq=analysis_freq))
pprint(f"The following are analysis results of the excess return without cost({analysis_freq}).")
pprint(analysis["excess_return_without_cost"])
pprint(f"The following are analysis results of the excess return with cost({analysis_freq}).")
pprint(analysis["excess_return_with_cost"])














Result

The backtest results are in the following form:

                                                  risk
excess_return_without_cost mean               0.000605
                           std                0.005481
                           annualized_return  0.152373
                           information_ratio  1.751319
                           max_drawdown      -0.059055
excess_return_with_cost    mean               0.000410
                           std                0.005478
                           annualized_return  0.103265
                           information_ratio  1.187411
                           max_drawdown      -0.075024






	
	excess_return_without_cost

	
	
	mean

	Mean value of the CAR (cumulative abnormal return) without cost







	
	std

	The Standard Deviation of CAR (cumulative abnormal return) without cost.







	
	annualized_return

	The Annualized Rate of CAR (cumulative abnormal return) without cost.







	
	information_ratio

	The Information Ratio without cost. please refer to Information Ratio – IR [https://www.investopedia.com/terms/i/informationratio.asp].







	
	max_drawdown

	The Maximum Drawdown of CAR (cumulative abnormal return) without cost, please refer to Maximum Drawdown (MDD) [https://www.investopedia.com/terms/m/maximum-drawdown-mdd.asp].















	
	excess_return_with_cost

	
	
	mean

	Mean value of the CAR (cumulative abnormal return) series with cost







	
	std

	The Standard Deviation of CAR (cumulative abnormal return) series with cost.







	
	annualized_return

	The Annualized Rate of CAR (cumulative abnormal return) with cost.







	
	information_ratio

	The Information Ratio with cost. please refer to Information Ratio – IR [https://www.investopedia.com/terms/i/informationratio.asp].







	
	max_drawdown

	The Maximum Drawdown of CAR (cumulative abnormal return) with cost, please refer to Maximum Drawdown (MDD) [https://www.investopedia.com/terms/m/maximum-drawdown-mdd.asp].




















Reference

To know more about the prediction score pred_score output by Forecast Model, please refer to Forecast Model: Model Training & Prediction.





          

      

      

    

  

    
      
          
            
  
Design of Nested Decision Execution Framework for High-Frequency Trading


Introduction

Daily trading (e.g. portfolio management) and intraday trading (e.g. orders execution) are two hot topics in Quant investment and are usually studied separately.

To get the join trading performance of daily and intraday trading, they must interact with each other and run backtest jointly.
In order to support the joint backtest strategies at multiple levels, a corresponding framework is required. None of the publicly available high-frequency trading frameworks considers multi-level joint trading, which makes the backtesting aforementioned inaccurate.

Besides backtesting, the optimization of strategies from different levels is not standalone and can be affected by each other.
For example, the best portfolio management strategy may change with the performance of order executions(e.g. a portfolio with higher turnover may become a better choice when we improve the order execution strategies).
To achieve overall good performance, it is necessary to consider the interaction of strategies at a different levels.

Therefore, building a new framework for trading on multiple levels becomes necessary to solve the various problems mentioned above, for which we designed a nested decision execution framework that considers the interaction of strategies.

[image: ../_images/framework.svg]The design of the framework is shown in the yellow part in the middle of the figure above. Each level consists of Trading Agent and Execution Env. Trading Agent has its own data processing module (Information Extractor), forecasting module (Forecast Model) and decision generator (Decision Generator). The trading algorithm generates the decisions by the Decision Generator based on the forecast signals output by the Forecast Module, and the decisions generated by the trading algorithm are passed to the Execution Env, which returns the execution results.

The frequency of the trading algorithm, decision content and execution environment can be customized by users (e.g. intraday trading, daily-frequency trading, weekly-frequency trading), and the execution environment can be nested with finer-grained trading algorithm and execution environment inside (i.e. sub-workflow in the figure, e.g. daily-frequency orders can be turned into finer-grained decisions by splitting orders within the day). The flexibility of the nested decision execution framework makes it easy for users to explore the effects of combining different levels of trading strategies and break down the optimization barriers between different levels of the trading algorithm.

The optimization for the nested decision execution framework can be implemented with the support of QlibRL [https://qlib.readthedocs.io/en/latest/component/rl.html]. To know more about how to use the QlibRL, go to API Reference: RL API.



Example

An example of a nested decision execution framework for high-frequency can be found here [https://github.com/microsoft/qlib/blob/main/examples/nested_decision_execution/workflow.py].

Besides, the above examples, here are some other related works about high-frequency trading in Qlib.


	Prediction with high-frequency data [https://github.com/microsoft/qlib/tree/main/examples/highfreq#benchmarks-performance-predicting-the-price-trend-in-high-frequency-data]


	Examples [https://github.com/microsoft/qlib/blob/main/examples/orderbook_data/] to extract features from high-frequency data without fixed frequency.


	A paper [https://github.com/microsoft/qlib/tree/high-freq-execution#high-frequency-execution] for high-frequency trading.








          

      

      

    

  

    
      
          
            
  
Meta Controller: Meta-Task & Meta-Dataset & Meta-Model


Introduction

Meta Controller provides guidance to Forecast Model, which aims to learn regular patterns among a series of forecasting tasks and use learned patterns to guide forthcoming forecasting tasks. Users can implement their own meta-model instance based on Meta Controller module.



Meta Task

A Meta Task instance is the basic element in the meta-learning framework. It saves the data that can be used for the Meta Model. Multiple Meta Task instances may share the same Data Handler, controlled by Meta Dataset. Users should use prepare_task_data() to obtain the data that can be directly fed into the Meta Model.


	
class qlib.model.meta.task.MetaTask(task: dict, meta_info: object, mode: str = 'full')

	A single meta-task, a meta-dataset contains a list of them.
It serves as a component as in MetaDatasetDS

The data processing is different


	the processed input may be different between training and testing



	When training, the X, y, X_test, y_test in training tasks are necessary (# PROC_MODE_FULL #)
but not necessary in test tasks. (# PROC_MODE_TEST #)


	When the meta model can be transferred into other dataset, only meta_info is necessary  (# PROC_MODE_TRANSFER #)












	
__init__(task: dict, meta_info: object, mode: str = 'full')

	The __init__ func is responsible for


	store the task


	store the origin input data for


	process the input data for meta data





	Parameters

	
	task (dict) – the task to be enhanced by meta model


	meta_info (object) – the input for meta model













	
get_meta_input() → object

	Return the processed meta_info











Meta Dataset

Meta Dataset controls the meta-information generating process. It is on the duty of providing data for training the Meta Model. Users should use prepare_tasks to retrieve a list of Meta Task instances.


	
class qlib.model.meta.dataset.MetaTaskDataset(segments: Union[Dict[str, Tuple], float], *args, **kwargs)

	A dataset fetching the data in a meta-level.

A Meta Dataset is responsible for


	input tasks(e.g. Qlib tasks) and prepare meta tasks



	meta task contains more information than normal tasks (e.g. input data for meta model)











The learnt pattern could transfer to other meta dataset. The following cases should be supported


	A meta-model trained on meta-dataset A and then applied to meta-dataset B



	Some pattern are shared between meta-dataset A and B, so meta-input on meta-dataset A are used when meta model are applied on meta-dataset-B












	
__init__(segments: Union[Dict[str, Tuple], float], *args, **kwargs)

	The meta-dataset maintains a list of meta-tasks when it is initialized.

The segments indicates the way to divide the data

The duty of the __init__ function of MetaTaskDataset
- initialize the tasks






	
prepare_tasks(segments: Union[List[str], str], *args, **kwargs) → List[qlib.model.meta.task.MetaTask]

	Prepare the data in each meta-task and ready for training.

The following code example shows how to retrieve a list of meta-tasks from the meta_dataset:


# get the train segment and the test segment, both of them are lists
train_meta_tasks, test_meta_tasks = meta_dataset.prepare_tasks(["train", "test"])









	Parameters

	segments (Union[List[Text], Tuple[Text], Text]) – the info to select data



	Returns

	A list of the prepared data of each meta-task for training the meta-model. For multiple segments [seg1, seg2, … , segN], the returned list will be [[tasks in seg1], [tasks in seg2], … , [tasks in segN]].
Each task is a meta task



	Return type

	list















Meta Model


General Meta Model

Meta Model instance is the part that controls the workflow. The usage of the Meta Model includes:
1. Users train their Meta Model with the fit function.
2. The Meta Model instance guides the workflow by giving useful information via the inference function.


	
class qlib.model.meta.model.MetaModel

	The meta-model guiding the model learning.

The word Guiding can be categorized into two types based on the stage of model learning
- The definition of learning tasks:  Please refer to docs of MetaTaskModel
- Controlling the learning process of models: Please refer to the docs of MetaGuideModel


	
fit(*args, **kwargs)

	The training process of the meta-model.






	
inference(*args, **kwargs) → object

	The inference process of the meta-model.


	Returns

	Some information to guide the model learning



	Return type

	object















Meta Task Model

This type of meta-model may interact with task definitions directly. Then, the Meta Task Model is the class for them to inherit from. They guide the base tasks by modifying the base task definitions. The function prepare_tasks can be used to obtain the modified base task definitions.


	
class qlib.model.meta.model.MetaTaskModel

	This type of meta-model deals with base task definitions. The meta-model creates tasks for training new base forecasting models after it is trained. prepare_tasks directly modifies the task definitions.


	
fit(meta_dataset: qlib.model.meta.dataset.MetaTaskDataset)

	The MetaTaskModel is expected to get prepared MetaTask from meta_dataset.
And then it will learn knowledge from the meta tasks






	
inference(meta_dataset: qlib.model.meta.dataset.MetaTaskDataset) → List[dict]

	MetaTaskModel will make inference on the meta_dataset
The MetaTaskModel is expected to get prepared MetaTask from meta_dataset.
Then it will create modified task with Qlib format which can be executed by Qlib trainer.


	Returns

	A list of modified task definitions.



	Return type

	List[dict]















Meta Guide Model

This type of meta-model participates in the training process of the base forecasting model. The meta-model may guide the base forecasting models during their training to improve their performances.


	
class qlib.model.meta.model.MetaGuideModel

	This type of meta-model aims to guide the training process of the base model. The meta-model interacts with the base forecasting models during their training process.


	
fit(*args, **kwargs)

	The training process of the meta-model.






	
inference(*args, **kwargs)

	The inference process of the meta-model.


	Returns

	Some information to guide the model learning



	Return type

	object
















Example

Qlib provides an implementation of Meta Model module, DDG-DA,
which adapts to the market dynamics.

DDG-DA includes four steps:


	Calculate meta-information and encapsulate it into Meta Task instances. All the meta-tasks form a Meta Dataset instance.


	Train DDG-DA based on the training data of the meta-dataset.


	Do the inference of the DDG-DA to get guide information.


	Apply guide information to the forecasting models to improve their performances.




The above example [https://github.com/microsoft/qlib/tree/main/examples/benchmarks_dynamic/DDG-DA] can be found in examples/benchmarks_dynamic/DDG-DA/workflow.py.





          

      

      

    

  

    
      
          
            
  
Qlib Recorder: Experiment Management


Introduction

Qlib contains an experiment management system named QlibRecorder, which is designed to help users handle experiment and analyse results in an efficient way.

There are three components of the system:


	
	ExperimentManager

	a class that manages experiments.







	
	Experiment

	a class of experiment, and each instance of it is responsible for a single experiment.







	
	Recorder

	a class of recorder, and each instance of it is responsible for a single run.









Here is a general view of the structure of the system:

This experiment management system defines a set of interface and provided a concrete implementation MLflowExpManager, which is based on the machine learning platform: MLFlow (link [https://mlflow.org/]).

If users set the implementation of ExpManager to be MLflowExpManager, they can use the command mlflow ui to visualize and check the experiment results. For more information, please refer to the related documents here [https://www.mlflow.org/docs/latest/cli.html#mlflow-ui].



Qlib Recorder

QlibRecorder provides a high level API for users to use the experiment management system. The interfaces are wrapped in the variable R in Qlib, and users can directly use R to interact with the system. The following command shows how to import R in Python:

from qlib.workflow import R





QlibRecorder includes several common API for managing experiments and recorders within a workflow. For more available APIs, please refer to the following section about Experiment Manager, Experiment and Recorder.

Here are the available interfaces of QlibRecorder:


	
class qlib.workflow.__init__.QlibRecorder(exp_manager: qlib.workflow.expm.ExpManager)

	A global system that helps to manage the experiments.


	
__init__(exp_manager: qlib.workflow.expm.ExpManager)

	Initialize self.  See help(type(self)) for accurate signature.






	
start(*, experiment_id: Optional[str] = None, experiment_name: Optional[str] = None, recorder_id: Optional[str] = None, recorder_name: Optional[str] = None, uri: Optional[str] = None, resume: bool = False)

	Method to start an experiment. This method can only be called within a Python’s with statement. Here is the example code:

# start new experiment and recorder
with R.start(experiment_name='test', recorder_name='recorder_1'):
    model.fit(dataset)
    R.log...
    ... # further operations

# resume previous experiment and recorder
with R.start(experiment_name='test', recorder_name='recorder_1', resume=True): # if users want to resume recorder, they have to specify the exact same name for experiment and recorder.
    ... # further operations






	Parameters

	
	experiment_id (str) – id of the experiment one wants to start.


	experiment_name (str) – name of the experiment one wants to start.


	recorder_id (str) – id of the recorder under the experiment one wants to start.


	recorder_name (str) – name of the recorder under the experiment one wants to start.


	uri (str) – The tracking uri of the experiment, where all the artifacts/metrics etc. will be stored.
The default uri is set in the qlib.config. Note that this uri argument will not change the one defined in the config file.
Therefore, the next time when users call this function in the same experiment,
they have to also specify this argument with the same value. Otherwise, inconsistent uri may occur.


	resume (bool) – whether to resume the specific recorder with given name under the given experiment.













	
start_exp(*, experiment_id=None, experiment_name=None, recorder_id=None, recorder_name=None, uri=None, resume=False)

	Lower level method for starting an experiment. When use this method, one should end the experiment manually
and the status of the recorder may not be handled properly. Here is the example code:

R.start_exp(experiment_name='test', recorder_name='recorder_1')
... # further operations
R.end_exp('FINISHED') or R.end_exp(Recorder.STATUS_S)






	Parameters

	
	experiment_id (str) – id of the experiment one wants to start.


	experiment_name (str) – the name of the experiment to be started


	recorder_id (str) – id of the recorder under the experiment one wants to start.


	recorder_name (str) – name of the recorder under the experiment one wants to start.


	uri (str) – the tracking uri of the experiment, where all the artifacts/metrics etc. will be stored.
The default uri are set in the qlib.config.


	resume (bool) – whether to resume the specific recorder with given name under the given experiment.






	Returns

	



	Return type

	An experiment instance being started.










	
end_exp(recorder_status='FINISHED')

	Method for ending an experiment manually. It will end the current active experiment, as well as its
active recorder with the specified status type. Here is the example code of the method:

R.start_exp(experiment_name='test')
... # further operations
R.end_exp('FINISHED') or R.end_exp(Recorder.STATUS_S)






	Parameters

	status (str) – The status of a recorder, which can be SCHEDULED, RUNNING, FINISHED, FAILED.










	
search_records(experiment_ids, **kwargs)

	Get a pandas DataFrame of records that fit the search criteria.

The arguments of this function are not set to be rigid, and they will be different with different implementation of
ExpManager in Qlib. Qlib now provides an implementation of ExpManager with mlflow, and here is the
example code of the method with the MLflowExpManager:

R.log_metrics(m=2.50, step=0)
records = R.search_records([experiment_id], order_by=["metrics.m DESC"])






	Parameters

	
	experiment_ids (list) – list of experiment IDs.


	filter_string (str) – filter query string, defaults to searching all runs.


	run_view_type (int) – one of enum values ACTIVE_ONLY, DELETED_ONLY, or ALL (e.g. in mlflow.entities.ViewType).


	max_results (int) – the maximum number of runs to put in the dataframe.


	order_by (list) – list of columns to order by (e.g., “metrics.rmse”).






	Returns

	
	A pandas.DataFrame of records, where each metric, parameter, and tag


	are expanded into their own columns named metrics., params.*, and tags.**


	respectively. For records that don’t have a particular metric, parameter, or tag, their


	value will be (NumPy) Nan, None, or None respectively.















	
list_experiments()

	Method for listing all the existing experiments (except for those being deleted.)

exps = R.list_experiments()






	Returns

	



	Return type

	A dictionary (name -> experiment) of experiments information that being stored.










	
list_recorders(experiment_id=None, experiment_name=None)

	Method for listing all the recorders of experiment with given id or name.

If user doesn’t provide the id or name of the experiment, this method will try to retrieve the default experiment and
list all the recorders of the default experiment. If the default experiment doesn’t exist, the method will first
create the default experiment, and then create a new recorder under it. (More information about the default experiment
can be found here).

Here is the example code:

recorders = R.list_recorders(experiment_name='test')






	Parameters

	
	experiment_id (str) – id of the experiment.


	experiment_name (str) – name of the experiment.






	Returns

	



	Return type

	A dictionary (id -> recorder) of recorder information that being stored.










	
get_exp(*, experiment_id=None, experiment_name=None, create: bool = True, start: bool = False) → qlib.workflow.exp.Experiment

	Method for retrieving an experiment with given id or name. Once the create argument is set to
True, if no valid experiment is found, this method will create one for you. Otherwise, it will
only retrieve a specific experiment or raise an Error.


	If ‘create’ is True:



	If active experiment exists:



	no id or name specified, return the active experiment.


	if id or name is specified, return the specified experiment. If no such exp found, create a new experiment with given id or name.









	If active experiment not exists:



	no id or name specified, create a default experiment, and the experiment is set to be active.


	if id or name is specified, return the specified experiment. If no such exp found, create a new experiment with given name or the default experiment.
















	Else If ‘create’ is False:



	If active experiment exists:



	no id or name specified, return the active experiment.


	if id or name is specified, return the specified experiment. If no such exp found, raise Error.









	If active experiment not exists:



	no id or name specified. If the default experiment exists, return it, otherwise, raise Error.


	if id or name is specified, return the specified experiment. If no such exp found, raise Error.


















Here are some use cases:

# Case 1
with R.start('test'):
    exp = R.get_exp()
    recorders = exp.list_recorders()

# Case 2
with R.start('test'):
    exp = R.get_exp(experiment_name='test1')

# Case 3
exp = R.get_exp() -> a default experiment.

# Case 4
exp = R.get_exp(experiment_name='test')

# Case 5
exp = R.get_exp(create=False) -> the default experiment if exists.






	Parameters

	
	experiment_id (str) – id of the experiment.


	experiment_name (str) – name of the experiment.


	create (boolean) – an argument determines whether the method will automatically create a new experiment
according to user’s specification if the experiment hasn’t been created before.


	start (bool) – when start is True,
if the experiment has not started(not activated), it will start
It is designed for R.log_params to auto start experiments






	Returns

	



	Return type

	An experiment instance with given id or name.










	
delete_exp(experiment_id=None, experiment_name=None)

	Method for deleting the experiment with given id or name. At least one of id or name must be given,
otherwise, error will occur.

Here is the example code:

R.delete_exp(experiment_name='test')






	Parameters

	
	experiment_id (str) – id of the experiment.


	experiment_name (str) – name of the experiment.













	
get_uri()

	Method for retrieving the uri of current experiment manager.

Here is the example code:

uri = R.get_uri()






	Returns

	



	Return type

	The uri of current experiment manager.










	
set_uri(uri: Optional[str])

	Method to reset the default uri of current experiment manager.

NOTE:


	When the uri is refer to a file path, please using the absolute path instead of strings like “~/mlruns/”
The backend don’t support strings like this.









	
uri_context(uri: str)

	Temporarily set the exp_manager’s default_uri to uri

NOTE:
- Please refer to the NOTE in the set_uri


	Parameters

	uri (Text) – the temporal uri










	
get_recorder(*, recorder_id=None, recorder_name=None, experiment_id=None, experiment_name=None) → qlib.workflow.recorder.Recorder

	Method for retrieving a recorder.


	If active recorder exists:



	no id or name specified, return the active recorder.


	if id or name is specified, return the specified recorder.









	If active recorder not exists:



	no id or name specified, raise Error.


	if id or name is specified, and the corresponding experiment_name must be given, return the specified recorder. Otherwise, raise Error.











The recorder can be used for further process such as save_object, load_object, log_params,
log_metrics, etc.

Here are some use cases:

# Case 1
with R.start(experiment_name='test'):
    recorder = R.get_recorder()

# Case 2
with R.start(experiment_name='test'):
    recorder = R.get_recorder(recorder_id='2e7a4efd66574fa49039e00ffaefa99d')

# Case 3
recorder = R.get_recorder() -> Error

# Case 4
recorder = R.get_recorder(recorder_id='2e7a4efd66574fa49039e00ffaefa99d') -> Error

# Case 5
recorder = R.get_recorder(recorder_id='2e7a4efd66574fa49039e00ffaefa99d', experiment_name='test')





Here are some things users may concern
- Q: What recorder will it return if multiple recorder meets the query (e.g. query with experiment_name)
- A: If mlflow backend is used, then the recorder with the latest start_time will be returned. Because MLflow’s search_runs function guarantee it


	Parameters

	
	recorder_id (str) – id of the recorder.


	recorder_name (str) – name of the recorder.


	experiment_name (str) – name of the experiment.






	Returns

	



	Return type

	A recorder instance.










	
delete_recorder(recorder_id=None, recorder_name=None)

	Method for deleting the recorders with given id or name. At least one of id or name must be given,
otherwise, error will occur.

Here is the example code:

R.delete_recorder(recorder_id='2e7a4efd66574fa49039e00ffaefa99d')






	Parameters

	
	recorder_id (str) – id of the experiment.


	recorder_name (str) – name of the experiment.













	
save_objects(local_path=None, artifact_path=None, **kwargs)

	Method for saving objects as artifacts in the experiment to the uri. It supports either saving
from a local file/directory, or directly saving objects. User can use valid python’s keywords arguments
to specify the object to be saved as well as its name (name: value).

In summary, this API is designs for saving objects to the experiments management backend path,
1. Qlib provide two methods to specify objects
- Passing in the object directly by passing with **kwargs (e.g. R.save_objects(trained_model=model))
- Passing in the local path to the object, i.e. local_path parameter.
2. artifact_path represents the  the experiments management backend path


	If active recorder exists: it will save the objects through the active recorder.


	If active recorder not exists: the system will create a default experiment, and a new recorder and save objects under it.





Note

If one wants to save objects with a specific recorder. It is recommended to first get the specific recorder through get_recorder API and use the recorder the save objects. The supported arguments are the same as this method.



Here are some use cases:

# Case 1
with R.start(experiment_name='test'):
    pred = model.predict(dataset)
    R.save_objects(**{"pred.pkl": pred}, artifact_path='prediction')
    rid = R.get_recorder().id
...
R.get_recorder(recorder_id=rid).load_object("prediction/pred.pkl")  #  after saving objects, you can load the previous object with this api

# Case 2
with R.start(experiment_name='test'):
    R.save_objects(local_path='results/pred.pkl', artifact_path="prediction")
    rid = R.get_recorder().id
...
R.get_recorder(recorder_id=rid).load_object("prediction/pred.pkl")  #  after saving objects, you can load the previous object with this api






	Parameters

	
	local_path (str) – if provided, them save the file or directory to the artifact URI.


	artifact_path (str) – the relative path for the artifact to be stored in the URI.


	**kwargs (Dict[Text, Any]) – the object to be saved.
For example, {“pred.pkl”: pred}













	
load_object(name: str)

	Method for loading an object from artifacts in the experiment in the uri.






	
log_params(**kwargs)

	Method for logging parameters during an experiment. In addition to using R, one can also log to a specific recorder after getting it with get_recorder API.


	If active recorder exists: it will log parameters through the active recorder.


	If active recorder not exists: the system will create a default experiment as well as a new recorder, and log parameters under it.




Here are some use cases:

# Case 1
with R.start('test'):
    R.log_params(learning_rate=0.01)

# Case 2
R.log_params(learning_rate=0.01)






	Parameters

	argument (keyword) – name1=value1, name2=value2, …










	
log_metrics(step=None, **kwargs)

	Method for logging metrics during an experiment. In addition to using R, one can also log to a specific recorder after getting it with get_recorder API.


	If active recorder exists: it will log metrics through the active recorder.


	If active recorder not exists: the system will create a default experiment as well as a new recorder, and log metrics under it.




Here are some use cases:

# Case 1
with R.start('test'):
    R.log_metrics(train_loss=0.33, step=1)

# Case 2
R.log_metrics(train_loss=0.33, step=1)






	Parameters

	argument (keyword) – name1=value1, name2=value2, …










	
log_artifact(local_path: str, artifact_path: Optional[str] = None)

	Log a local file or directory as an artifact of the currently active run


	If active recorder exists: it will set tags through the active recorder.


	If active recorder not exists: the system will create a default experiment as well as a new recorder, and set the tags under it.





	Parameters

	
	local_path (str) – Path to the file to write.


	artifact_path (Optional[str]) – If provided, the directory in artifact_uri to write to.













	
download_artifact(path: str, dst_path: Optional[str] = None) → str

	Download an artifact file or directory from a run to a local directory if applicable,
and return a local path for it.


	Parameters

	
	path (str) – Relative source path to the desired artifact.


	dst_path (Optional[str]) – Absolute path of the local filesystem destination directory to which to
download the specified artifacts. This directory must already exist.
If unspecified, the artifacts will either be downloaded to a new
uniquely-named directory on the local filesystem.






	Returns

	Local path of desired artifact.



	Return type

	str










	
set_tags(**kwargs)

	Method for setting tags for a recorder. In addition to using R, one can also set the tag to a specific recorder after getting it with get_recorder API.


	If active recorder exists: it will set tags through the active recorder.


	If active recorder not exists: the system will create a default experiment as well as a new recorder, and set the tags under it.




Here are some use cases:

# Case 1
with R.start('test'):
    R.set_tags(release_version="2.2.0")

# Case 2
R.set_tags(release_version="2.2.0")






	Parameters

	argument (keyword) – name1=value1, name2=value2, …















Experiment Manager

The ExpManager module in Qlib is responsible for managing different experiments. Most of the APIs of ExpManager are similar to QlibRecorder, and the most important API will be the get_exp method. User can directly refer to the documents above for some detailed information about how to use the get_exp method.


	
class qlib.workflow.expm.ExpManager(uri: str, default_exp_name: Optional[str])

	This is the ExpManager class for managing experiments. The API is designed similar to mlflow.
(The link: https://mlflow.org/docs/latest/python_api/mlflow.html)

The ExpManager is expected to be a singleton (btw, we can have multiple Experiment`s with different uri. user can get different experiments from different uri, and then compare records of them). Global Config (i.e. `C)  is also a singleton.

So we try to align them together.  They share the same variable, which is called default uri. Please refer to ExpManager.default_uri for details of variable sharing.

When the user starts an experiment, the user may want to set the uri to a specific uri (it will override default uri during this period), and then unset the specific uri and fallback to the default uri.    ExpManager._active_exp_uri is that specific uri.


	
__init__(uri: str, default_exp_name: Optional[str])

	Initialize self.  See help(type(self)) for accurate signature.






	
start_exp(*, experiment_id: Optional[str] = None, experiment_name: Optional[str] = None, recorder_id: Optional[str] = None, recorder_name: Optional[str] = None, uri: Optional[str] = None, resume: bool = False, **kwargs) → qlib.workflow.exp.Experiment

	Start an experiment. This method includes first get_or_create an experiment, and then
set it to be active.

Maintaining _active_exp_uri is included in start_exp, remaining implementation should be included in _end_exp in subclass


	Parameters

	
	experiment_id (str) – id of the active experiment.


	experiment_name (str) – name of the active experiment.


	recorder_id (str) – id of the recorder to be started.


	recorder_name (str) – name of the recorder to be started.


	uri (str) – the current tracking URI.


	resume (boolean) – whether to resume the experiment and recorder.






	Returns

	



	Return type

	An active experiment.










	
end_exp(recorder_status: str = 'SCHEDULED', **kwargs)

	End an active experiment.

Maintaining _active_exp_uri is included in end_exp, remaining implementation should be included in _end_exp in subclass


	Parameters

	
	experiment_name (str) – name of the active experiment.


	recorder_status (str) – the status of the active recorder of the experiment.













	
create_exp(experiment_name: Optional[str] = None)

	Create an experiment.


	Parameters

	experiment_name (str) – the experiment name, which must be unique.



	Returns

	
	An experiment object.


	Raise


	—–


	ExpAlreadyExistError















	
search_records(experiment_ids=None, **kwargs)

	Get a pandas DataFrame of records that fit the search criteria of the experiment.
Inputs are the search criteria user want to apply.


	Returns

	
	A pandas.DataFrame of records, where each metric, parameter, and tag


	are expanded into their own columns named metrics., params.*, and tags.**


	respectively. For records that don’t have a particular metric, parameter, or tag, their


	value will be (NumPy) Nan, None, or None respectively.















	
get_exp(*, experiment_id=None, experiment_name=None, create: bool = True, start: bool = False)

	Retrieve an experiment. This method includes getting an active experiment, and get_or_create a specific experiment.

When user specify experiment id and name, the method will try to return the specific experiment.
When user does not provide recorder id or name, the method will try to return the current active experiment.
The create argument determines whether the method will automatically create a new experiment according
to user’s specification if the experiment hasn’t been created before.


	If create is True:



	If active experiment exists:



	no id or name specified, return the active experiment.


	if id or name is specified, return the specified experiment. If no such exp found, create a new experiment with given id or name. If start is set to be True, the experiment is set to be active.









	If active experiment not exists:



	no id or name specified, create a default experiment.


	if id or name is specified, return the specified experiment. If no such exp found, create a new experiment with given id or name. If start is set to be True, the experiment is set to be active.
















	Else If create is False:



	If active experiment exists:



	no id or name specified, return the active experiment.


	if id or name is specified, return the specified experiment. If no such exp found, raise Error.









	If active experiment not exists:



	no id or name specified. If the default experiment exists, return it, otherwise, raise Error.


	if id or name is specified, return the specified experiment. If no such exp found, raise Error.



















	Parameters

	
	experiment_id (str) – id of the experiment to return.


	experiment_name (str) – name of the experiment to return.


	create (boolean) – create the experiment it if hasn’t been created before.


	start (boolean) – start the new experiment if one is created.






	Returns

	



	Return type

	An experiment object.










	
delete_exp(experiment_id=None, experiment_name=None)

	Delete an experiment.


	Parameters

	
	experiment_id (str) – the experiment id.


	experiment_name (str) – the experiment name.













	
default_uri

	Get the default tracking URI from qlib.config.C






	
uri

	Get the default tracking URI or current URI.


	Returns

	



	Return type

	The tracking URI string.










	
list_experiments()

	List all the existing experiments.


	Returns

	



	Return type

	A dictionary (name -> experiment) of experiments information that being stored.













For other interfaces such as create_exp, delete_exp, please refer to Experiment Manager API.



Experiment

The Experiment class is solely responsible for a single experiment, and it will handle any operations that are related to an experiment. Basic methods such as start, end an experiment are included. Besides, methods related to recorders are also available: such methods include get_recorder and list_recorders.


	
class qlib.workflow.exp.Experiment(id, name)

	This is the Experiment class for each experiment being run. The API is designed similar to mlflow.
(The link: https://mlflow.org/docs/latest/python_api/mlflow.html)


	
__init__(id, name)

	Initialize self.  See help(type(self)) for accurate signature.






	
start(*, recorder_id=None, recorder_name=None, resume=False)

	Start the experiment and set it to be active. This method will also start a new recorder.


	Parameters

	
	recorder_id (str) – the id of the recorder to be created.


	recorder_name (str) – the name of the recorder to be created.


	resume (bool) – whether to resume the first recorder






	Returns

	



	Return type

	An active recorder.










	
end(recorder_status='SCHEDULED')

	End the experiment.


	Parameters

	recorder_status (str) – the status the recorder to be set with when ending (SCHEDULED, RUNNING, FINISHED, FAILED).










	
create_recorder(recorder_name=None)

	Create a recorder for each experiment.


	Parameters

	recorder_name (str) – the name of the recorder to be created.



	Returns

	



	Return type

	A recorder object.










	
search_records(**kwargs)

	Get a pandas DataFrame of records that fit the search criteria of the experiment.
Inputs are the search criteria user want to apply.


	Returns

	
	A pandas.DataFrame of records, where each metric, parameter, and tag


	are expanded into their own columns named metrics., params.*, and tags.**


	respectively. For records that don’t have a particular metric, parameter, or tag, their


	value will be (NumPy) Nan, None, or None respectively.















	
delete_recorder(recorder_id)

	Create a recorder for each experiment.


	Parameters

	recorder_id (str) – the id of the recorder to be deleted.










	
get_recorder(recorder_id=None, recorder_name=None, create: bool = True, start: bool = False) → qlib.workflow.recorder.Recorder

	Retrieve a Recorder for user. When user specify recorder id and name, the method will try to return the
specific recorder. When user does not provide recorder id or name, the method will try to return the current
active recorder. The create argument determines whether the method will automatically create a new recorder
according to user’s specification if the recorder hasn’t been created before.


	If create is True:



	If active recorder exists:



	no id or name specified, return the active recorder.


	if id or name is specified, return the specified recorder. If no such exp found, create a new recorder with given id or name. If start is set to be True, the recorder is set to be active.









	If active recorder not exists:



	no id or name specified, create a new recorder.


	if id or name is specified, return the specified experiment. If no such exp found, create a new recorder with given id or name. If start is set to be True, the recorder is set to be active.
















	Else If create is False:



	If active recorder exists:



	no id or name specified, return the active recorder.


	if id or name is specified, return the specified recorder. If no such exp found, raise Error.









	If active recorder not exists:



	no id or name specified, raise Error.


	if id or name is specified, return the specified recorder. If no such exp found, raise Error.



















	Parameters

	
	recorder_id (str) – the id of the recorder to be deleted.


	recorder_name (str) – the name of the recorder to be deleted.


	create (boolean) – create the recorder if it hasn’t been created before.


	start (boolean) – start the new recorder if one is created.






	Returns

	



	Return type

	A recorder object.










	
list_recorders(rtype: typing_extensions.Literal['dict', 'list'][dict, list] = 'dict', **flt_kwargs) → Union[List[qlib.workflow.recorder.Recorder], Dict[str, qlib.workflow.recorder.Recorder]]

	List all the existing recorders of this experiment. Please first get the experiment instance before calling this method.
If user want to use the method R.list_recorders(), please refer to the related API document in QlibRecorder.


	flt_kwargsdict

	filter recorders by conditions
e.g.  list_recorders(status=Recorder.STATUS_FI)






	Returns

	
	if rtype == “dict”:

	A dictionary (id -> recorder) of recorder information that being stored.



	elif rtype == “list”:

	A list of Recorder.









	Return type

	The return type depends on rtype













For other interfaces such as search_records, delete_recorder, please refer to Experiment API.

Qlib also provides a default Experiment, which will be created and used under certain situations when users use the APIs such as log_metrics or get_exp. If the default Experiment is used, there will be related logged information when running Qlib. Users are able to change the name of the default Experiment in the config file of Qlib or during Qlib’s initialization, which is set to be ‘Experiment’.



Recorder

The Recorder class is responsible for a single recorder. It will handle some detailed operations such as log_metrics, log_params of a single run. It is designed to help user to easily track results and things being generated during a run.

Here are some important APIs that are not included in the QlibRecorder:


	
class qlib.workflow.recorder.Recorder(experiment_id, name)

	This is the Recorder class for logging the experiments. The API is designed similar to mlflow.
(The link: https://mlflow.org/docs/latest/python_api/mlflow.html)

The status of the recorder can be SCHEDULED, RUNNING, FINISHED, FAILED.


	
__init__(experiment_id, name)

	Initialize self.  See help(type(self)) for accurate signature.






	
save_objects(local_path=None, artifact_path=None, **kwargs)

	Save objects such as prediction file or model checkpoints to the artifact URI. User
can save object through keywords arguments (name:value).

Please refer to the docs of qlib.workflow:R.save_objects


	Parameters

	
	local_path (str) – if provided, them save the file or directory to the artifact URI.


	artifact_path=None (str) – the relative path for the artifact to be stored in the URI.













	
load_object(name)

	Load objects such as prediction file or model checkpoints.


	Parameters

	name (str) – name of the file to be loaded.



	Returns

	



	Return type

	The saved object.










	
start_run()

	Start running or resuming the Recorder. The return value can be used as a context manager within a with block;
otherwise, you must call end_run() to terminate the current run. (See ActiveRun class in mlflow)


	Returns

	



	Return type

	An active running object (e.g. mlflow.ActiveRun object)










	
end_run()

	End an active Recorder.






	
log_params(**kwargs)

	Log a batch of params for the current run.


	Parameters

	arguments (keyword) – key, value pair to be logged as parameters.










	
log_metrics(step=None, **kwargs)

	Log multiple metrics for the current run.


	Parameters

	arguments (keyword) – key, value pair to be logged as metrics.










	
log_artifact(local_path: str, artifact_path: Optional[str] = None)

	Log a local file or directory as an artifact of the currently active run.


	Parameters

	
	local_path (str) – Path to the file to write.


	artifact_path (Optional[str]) – If provided, the directory in artifact_uri to write to.













	
set_tags(**kwargs)

	Log a batch of tags for the current run.


	Parameters

	arguments (keyword) – key, value pair to be logged as tags.










	
delete_tags(*keys)

	Delete some tags from a run.


	Parameters

	keys (series of strs of the keys) – all the name of the tag to be deleted.










	
list_artifacts(artifact_path: str = None)

	List all the artifacts of a recorder.


	Parameters

	artifact_path (str) – the relative path for the artifact to be stored in the URI.



	Returns

	



	Return type

	A list of artifacts information (name, path, etc.) that being stored.










	
download_artifact(path: str, dst_path: Optional[str] = None) → str

	Download an artifact file or directory from a run to a local directory if applicable,
and return a local path for it.


	Parameters

	
	path (str) – Relative source path to the desired artifact.


	dst_path (Optional[str]) – Absolute path of the local filesystem destination directory to which to
download the specified artifacts. This directory must already exist.
If unspecified, the artifacts will either be downloaded to a new
uniquely-named directory on the local filesystem.






	Returns

	Local path of desired artifact.



	Return type

	str










	
list_metrics()

	List all the metrics of a recorder.


	Returns

	



	Return type

	A dictionary of metrics that being stored.










	
list_params()

	List all the params of a recorder.


	Returns

	



	Return type

	A dictionary of params that being stored.










	
list_tags()

	List all the tags of a recorder.


	Returns

	



	Return type

	A dictionary of tags that being stored.













For other interfaces such as save_objects, load_object, please refer to Recorder API.



Record Template

The RecordTemp class is a class that enables generate experiment results such as IC and backtest in a certain format. We have provided three different Record Template class:


	SignalRecord: This class generates the prediction results of the model.


	SigAnaRecord: This class generates the IC, ICIR, Rank IC and Rank ICIR of the model.




Here is a simple example of what is done in SigAnaRecord, which users can refer to if they want to calculate IC, Rank IC, Long-Short Return with their own prediction and label.

from qlib.contrib.eva.alpha import calc_ic, calc_long_short_return

ic, ric = calc_ic(pred.iloc[:, 0], label.iloc[:, 0])
long_short_r, long_avg_r = calc_long_short_return(pred.iloc[:, 0], label.iloc[:, 0])






	PortAnaRecord: This class generates the results of backtest. The detailed information about backtest as well as the available strategy, users can refer to Strategy and Backtest.




Here is a simple example of what is done in PortAnaRecord, which users can refer to if they want to do backtest based on their own prediction and label.

from qlib.contrib.strategy.strategy import TopkDropoutStrategy
from qlib.contrib.evaluate import (
    backtest as normal_backtest,
    risk_analysis,
)

# backtest
STRATEGY_CONFIG = {
    "topk": 50,
    "n_drop": 5,
}
BACKTEST_CONFIG = {
    "limit_threshold": 0.095,
    "account": 100000000,
    "benchmark": BENCHMARK,
    "deal_price": "close",
    "open_cost": 0.0005,
    "close_cost": 0.0015,
    "min_cost": 5,
}

strategy = TopkDropoutStrategy(**STRATEGY_CONFIG)
report_normal, positions_normal = normal_backtest(pred_score, strategy=strategy, **BACKTEST_CONFIG)

# analysis
analysis = dict()
analysis["excess_return_without_cost"] = risk_analysis(report_normal["return"] - report_normal["bench"])
analysis["excess_return_with_cost"] = risk_analysis(report_normal["return"] - report_normal["bench"] - report_normal["cost"])
analysis_df = pd.concat(analysis)  # type: pd.DataFrame
print(analysis_df)





For more information about the APIs, please refer to Record Template API.



Known Limitations


	The Python objects are saved based on pickle, which may results in issues when the environment dumping objects and loading objects are different.








          

      

      

    

  

    
      
          
            
  
Analysis: Evaluation & Results Analysis


Introduction

Analysis is designed to show the graphical reports of Intraday Trading , which helps users to evaluate and analyse investment portfolios visually. The following are some graphics to view:


	
	analysis_position

	
	report_graph


	score_ic_graph


	cumulative_return_graph


	risk_analysis_graph


	rank_label_graph










	
	analysis_model

	
	model_performance_graph












All of the accumulated profit metrics(e.g. return, max drawdown) in Qlib are calculated by summation.
This avoids the metrics or the plots being skewed exponentially over time.



Graphical Reports

Users can run the following code to get all supported reports.

>> import qlib.contrib.report as qcr
>> print(qcr.GRAPH_NAME_LIST)
['analysis_position.report_graph', 'analysis_position.score_ic_graph', 'analysis_position.cumulative_return_graph', 'analysis_position.risk_analysis_graph', 'analysis_position.rank_label_graph', 'analysis_model.model_performance_graph']






Note

For more details, please refer to the function document: similar to help(qcr.analysis_position.report_graph)





Usage & Example


Usage of analysis_position.report


API


	
qlib.contrib.report.analysis_position.report.report_graph(report_df: pandas.core.frame.DataFrame, show_notebook: bool = True) → [<class 'list'>, <class 'tuple'>]

	display backtest report


Example:


import qlib
import pandas as pd
from qlib.utils.time import Freq
from qlib.utils import flatten_dict
from qlib.backtest import backtest, executor
from qlib.contrib.evaluate import risk_analysis
from qlib.contrib.strategy import TopkDropoutStrategy

# init qlib
qlib.init(provider_uri=<qlib data dir>)

CSI300_BENCH = "SH000300"
FREQ = "day"
STRATEGY_CONFIG = {
    "topk": 50,
    "n_drop": 5,
    # pred_score, pd.Series
    "signal": pred_score,
}

EXECUTOR_CONFIG = {
    "time_per_step": "day",
    "generate_portfolio_metrics": True,
}

backtest_config = {
    "start_time": "2017-01-01",
    "end_time": "2020-08-01",
    "account": 100000000,
    "benchmark": CSI300_BENCH,
    "exchange_kwargs": {
        "freq": FREQ,
        "limit_threshold": 0.095,
        "deal_price": "close",
        "open_cost": 0.0005,
        "close_cost": 0.0015,
        "min_cost": 5,
    },
}

# strategy object
strategy_obj = TopkDropoutStrategy(**STRATEGY_CONFIG)
# executor object
executor_obj = executor.SimulatorExecutor(**EXECUTOR_CONFIG)
# backtest
portfolio_metric_dict, indicator_dict = backtest(executor=executor_obj, strategy=strategy_obj, **backtest_config)
analysis_freq = "{0}{1}".format(*Freq.parse(FREQ))
# backtest info
report_normal_df, positions_normal = portfolio_metric_dict.get(analysis_freq)

qcr.analysis_position.report_graph(report_normal_df)












	Parameters

	
	report_df – df.index.name must be date, df.columns must contain return, turnover, cost, bench.

            return      cost        bench       turnover
date
2017-01-04  0.003421    0.000864    0.011693    0.576325
2017-01-05  0.000508    0.000447    0.000721    0.227882
2017-01-06  -0.003321   0.000212    -0.004322   0.102765
2017-01-09  0.006753    0.000212    0.006874    0.105864
2017-01-10  -0.000416   0.000440    -0.003350   0.208396








	show_notebook – whether to display graphics in notebook, the default is True.






	Returns

	if show_notebook is True, display in notebook; else return plotly.graph_objs.Figure list.











Graphical Result


Note


	Axis X: Trading day


	
	Axis Y:

	
	
	cum bench

	Cumulative returns series of benchmark







	
	cum return wo cost

	Cumulative returns series of portfolio without cost







	
	cum return w cost

	Cumulative returns series of portfolio with cost







	
	return wo mdd

	Maximum drawdown series of cumulative return without cost







	
	return w cost mdd:

	Maximum drawdown series of cumulative return with cost







	
	cum ex return wo cost

	The CAR (cumulative abnormal return) series of the portfolio compared to the benchmark without cost.







	
	cum ex return w cost

	The CAR (cumulative abnormal return) series of the portfolio compared to the benchmark with cost.







	
	turnover

	Turnover rate series







	
	cum ex return wo cost mdd

	Drawdown series of CAR (cumulative abnormal return) without cost







	
	cum ex return w cost mdd

	Drawdown series of CAR (cumulative abnormal return) with cost















	The shaded part above: Maximum drawdown corresponding to cum return wo cost


	The shaded part below: Maximum drawdown corresponding to cum ex return wo cost






[image: ../_images/report.png]



Usage of analysis_position.score_ic


API


	
qlib.contrib.report.analysis_position.score_ic.score_ic_graph(pred_label: pandas.core.frame.DataFrame, show_notebook: bool = True, **kwargs) → [<class 'list'>, <class 'tuple'>]

	score IC


Example:


from qlib.data import D
from qlib.contrib.report import analysis_position
pred_df_dates = pred_df.index.get_level_values(level='datetime')
features_df = D.features(D.instruments('csi500'), ['Ref($close, -2)/Ref($close, -1)-1'], pred_df_dates.min(), pred_df_dates.max())
features_df.columns = ['label']
pred_label = pd.concat([features_df, pred], axis=1, sort=True).reindex(features_df.index)
analysis_position.score_ic_graph(pred_label)












	Parameters

	
	pred_label – index is pd.MultiIndex, index name is [instrument, datetime]; columns names is [score, label].

instrument  datetime        score         label
SH600004  2017-12-11     -0.013502       -0.013502
            2017-12-12   -0.072367       -0.072367
            2017-12-13   -0.068605       -0.068605
            2017-12-14    0.012440        0.012440
            2017-12-15   -0.102778       -0.102778








	show_notebook – whether to display graphics in notebook, the default is True.






	Returns

	if show_notebook is True, display in notebook; else return plotly.graph_objs.Figure list.











Graphical Result


Note


	Axis X: Trading day


	
	Axis Y:

	
	
	ic

	The Pearson correlation coefficient series between label and prediction score.
In the above example, the label is formulated as Ref($close, -2)/Ref($close, -1)-1. Please refer to Data Feature for more details.







	
	rank_ic

	The Spearman’s rank correlation coefficient series between label and prediction score.



















[image: ../_images/score_ic.png]



Usage of analysis_position.risk_analysis


API


	
qlib.contrib.report.analysis_position.risk_analysis.risk_analysis_graph(analysis_df: pandas.core.frame.DataFrame = None, report_normal_df: pandas.core.frame.DataFrame = None, report_long_short_df: pandas.core.frame.DataFrame = None, show_notebook: bool = True) → Iterable[plotly.graph_objs._figure.Figure]

	Generate analysis graph and monthly analysis


Example:


import qlib
import pandas as pd
from qlib.utils.time import Freq
from qlib.utils import flatten_dict
from qlib.backtest import backtest, executor
from qlib.contrib.evaluate import risk_analysis
from qlib.contrib.strategy import TopkDropoutStrategy

# init qlib
qlib.init(provider_uri=<qlib data dir>)

CSI300_BENCH = "SH000300"
FREQ = "day"
STRATEGY_CONFIG = {
    "topk": 50,
    "n_drop": 5,
    # pred_score, pd.Series
    "signal": pred_score,
}

EXECUTOR_CONFIG = {
    "time_per_step": "day",
    "generate_portfolio_metrics": True,
}

backtest_config = {
    "start_time": "2017-01-01",
    "end_time": "2020-08-01",
    "account": 100000000,
    "benchmark": CSI300_BENCH,
    "exchange_kwargs": {
        "freq": FREQ,
        "limit_threshold": 0.095,
        "deal_price": "close",
        "open_cost": 0.0005,
        "close_cost": 0.0015,
        "min_cost": 5,
    },
}

# strategy object
strategy_obj = TopkDropoutStrategy(**STRATEGY_CONFIG)
# executor object
executor_obj = executor.SimulatorExecutor(**EXECUTOR_CONFIG)
# backtest
portfolio_metric_dict, indicator_dict = backtest(executor=executor_obj, strategy=strategy_obj, **backtest_config)
analysis_freq = "{0}{1}".format(*Freq.parse(FREQ))
# backtest info
report_normal_df, positions_normal = portfolio_metric_dict.get(analysis_freq)
analysis = dict()
analysis["excess_return_without_cost"] = risk_analysis(
    report_normal_df["return"] - report_normal_df["bench"], freq=analysis_freq
)
analysis["excess_return_with_cost"] = risk_analysis(
    report_normal_df["return"] - report_normal_df["bench"] - report_normal_df["cost"], freq=analysis_freq
)

analysis_df = pd.concat(analysis)  # type: pd.DataFrame
analysis_position.risk_analysis_graph(analysis_df, report_normal_df)












	Parameters

	
	analysis_df – analysis data, index is pd.MultiIndex; columns names is [risk].

                                                  risk
excess_return_without_cost mean               0.000692
                           std                0.005374
                           annualized_return  0.174495
                           information_ratio  2.045576
                           max_drawdown      -0.079103
excess_return_with_cost    mean               0.000499
                           std                0.005372
                           annualized_return  0.125625
                           information_ratio  1.473152
                           max_drawdown      -0.088263








	report_normal_df – df.index.name must be date, df.columns must contain return, turnover, cost, bench.

            return      cost        bench       turnover
date
2017-01-04  0.003421    0.000864    0.011693    0.576325
2017-01-05  0.000508    0.000447    0.000721    0.227882
2017-01-06  -0.003321   0.000212    -0.004322   0.102765
2017-01-09  0.006753    0.000212    0.006874    0.105864
2017-01-10  -0.000416   0.000440    -0.003350   0.208396








	report_long_short_df – df.index.name must be date, df.columns contain long, short, long_short.

            long        short       long_short
date
2017-01-04  -0.001360   0.001394    0.000034
2017-01-05  0.002456    0.000058    0.002514
2017-01-06  0.000120    0.002739    0.002859
2017-01-09  0.001436    0.001838    0.003273
2017-01-10  0.000824    -0.001944   -0.001120








	show_notebook – Whether to display graphics in a notebook, default True.
If True, show graph in notebook
If False, return graph figure






	Returns

	











Graphical Result


Note


	
	general graphics

	
	
	std

	
	
	excess_return_without_cost

	The Standard Deviation of CAR (cumulative abnormal return) without cost.







	
	excess_return_with_cost

	The Standard Deviation of CAR (cumulative abnormal return) with cost.















	
	annualized_return

	
	
	excess_return_without_cost

	The Annualized Rate of CAR (cumulative abnormal return) without cost.







	
	excess_return_with_cost

	The Annualized Rate of CAR (cumulative abnormal return) with cost.















	
	information_ratio

	
	
	excess_return_without_cost

	The Information Ratio without cost.







	
	excess_return_with_cost

	The Information Ratio with cost.









To know more about Information Ratio, please refer to Information Ratio – IR [https://www.investopedia.com/terms/i/informationratio.asp].







	
	max_drawdown

	
	
	excess_return_without_cost

	The Maximum Drawdown of CAR (cumulative abnormal return) without cost.







	
	excess_return_with_cost

	The Maximum Drawdown of CAR (cumulative abnormal return) with cost.



























[image: ../_images/risk_analysis_bar.png]

Note


	
	annualized_return/max_drawdown/information_ratio/std graphics

	
	Axis X: Trading days grouped by month


	
	Axis Y:

	
	
	annualized_return graphics

	
	
	excess_return_without_cost_annualized_return

	The Annualized Rate series of monthly CAR (cumulative abnormal return) without cost.







	
	excess_return_with_cost_annualized_return

	The Annualized Rate series of monthly CAR (cumulative abnormal return) with cost.















	
	max_drawdown graphics

	
	
	excess_return_without_cost_max_drawdown

	The Maximum Drawdown series of monthly CAR (cumulative abnormal return) without cost.







	
	excess_return_with_cost_max_drawdown

	The Maximum Drawdown series of monthly CAR (cumulative abnormal return) with cost.















	
	information_ratio graphics

	
	
	excess_return_without_cost_information_ratio

	The Information Ratio series of monthly CAR (cumulative abnormal return) without cost.







	
	excess_return_with_cost_information_ratio

	The Information Ratio series of monthly CAR (cumulative abnormal return) with cost.















	
	std graphics

	
	
	excess_return_without_cost_max_drawdown

	The Standard Deviation series of monthly CAR (cumulative abnormal return) without cost.







	
	excess_return_with_cost_max_drawdown

	The Standard Deviation series of monthly CAR (cumulative abnormal return) with cost.



































[image: ../_images/risk_analysis_annualized_return.png]
[image: ../_images/risk_analysis_max_drawdown.png]
[image: ../_images/risk_analysis_information_ratio.png]
[image: ../_images/risk_analysis_std.png]



Usage of analysis_model.analysis_model_performance


API


	
qlib.contrib.report.analysis_model.analysis_model_performance.ic_figure(ic_df: pandas.core.frame.DataFrame, show_nature_day=True, **kwargs) → plotly.graph_objs._figure.Figure

	IC figure


	Parameters

	
	ic_df – ic DataFrame


	show_nature_day – whether to display the abscissa of non-trading day


	**kwargs – contains some parameters to control plot style in plotly. Currently, supports
- rangebreaks: https://plotly.com/python/time-series/#Hiding-Weekends-and-Holidays






	Returns

	plotly.graph_objs.Figure










	
qlib.contrib.report.analysis_model.analysis_model_performance.model_performance_graph(pred_label: pandas.core.frame.DataFrame, lag: int = 1, N: int = 5, reverse=False, rank=False, graph_names: list = ['group_return', 'pred_ic', 'pred_autocorr'], show_notebook: bool = True, show_nature_day: bool = False, **kwargs) → [<class 'list'>, <class 'tuple'>]

	Model performance


	Parameters

	
	pred_label – index is pd.MultiIndex, index name is [instrument, datetime]; columns names is [score, label].
It is usually same as the label of model training(e.g. “Ref($close, -2)/Ref($close, -1) - 1”).


instrument  datetime        score       label
SH600004    2017-12-11  -0.013502       -0.013502
                2017-12-12  -0.072367       -0.072367
                2017-12-13  -0.068605       -0.068605
                2017-12-14  0.012440        0.012440
                2017-12-15  -0.102778       -0.102778











	lag – pred.groupby(level=’instrument’)[‘score’].shift(lag). It will be only used in the auto-correlation computing.


	N – group number, default 5.


	reverse – if True, pred[‘score’] *= -1.


	rank – if True, calculate rank ic.


	graph_names – graph names; default [‘cumulative_return’, ‘pred_ic’, ‘pred_autocorr’, ‘pred_turnover’].


	show_notebook – whether to display graphics in notebook, the default is True.


	show_nature_day – whether to display the abscissa of non-trading day.


	**kwargs – contains some parameters to control plot style in plotly. Currently, supports
- rangebreaks: https://plotly.com/python/time-series/#Hiding-Weekends-and-Holidays






	Returns

	if show_notebook is True, display in notebook; else return plotly.graph_objs.Figure list.











Graphical Results


Note


	
	cumulative return graphics

	
	
	Group1:

	The Cumulative Return series of stocks group with (ranking ratio of label <= 20%)







	
	Group2:

	The Cumulative Return series of stocks group with (20% < ranking ratio of label <= 40%)







	
	Group3:

	The Cumulative Return series of stocks group with (40% < ranking ratio of label <= 60%)







	
	Group4:

	The Cumulative Return series of stocks group with (60% < ranking ratio of label <= 80%)







	
	Group5:

	The Cumulative Return series of stocks group with (80% < ranking ratio of label)







	
	long-short:

	The Difference series between Cumulative Return of Group1 and of Group5







	
	long-average

	The Difference series between Cumulative Return of Group1 and average Cumulative Return for all stocks.










	The ranking ratio can be formulated as follows.

	
\[ranking\ ratio = \frac{Ascending\ Ranking\ of\ label}{Number\ of\ Stocks\ in\ the\ Portfolio}\]















[image: ../_images/analysis_model_cumulative_return.png]

Note


	
	long-short/long-average

	The distribution of long-short/long-average returns on each trading day











[image: ../_images/analysis_model_long_short.png]

Note


	
	Information Coefficient

	
	The Pearson correlation coefficient series between labels and prediction scores of stocks in portfolio.


	The graphics reports can be used to evaluate the prediction scores.














[image: ../_images/analysis_model_IC.png]

Note


	
	Monthly IC

	Monthly average of the Information Coefficient











[image: ../_images/analysis_model_monthly_IC.png]

Note


	
	IC

	The distribution of the Information Coefficient on each trading day.







	
	IC Normal Dist. Q-Q

	The Quantile-Quantile Plot is used for the normal distribution of Information Coefficient on each trading day.











[image: ../_images/analysis_model_NDQ.png]

Note


	
	Auto Correlation

	
	The Pearson correlation coefficient series between the latest prediction scores and the prediction scores lag days ago of stocks in portfolio on each trading day.


	The graphics reports can be used to estimate the turnover rate.














[image: ../_images/analysis_model_auto_correlation.png]






          

      

      

    

  

    
      
          
            
  
Online Serving


Introduction

[image: ../_images/online_serving.png]
In addition to backtesting, one way to test a model is effective is to make predictions in real market conditions or even do real trading based on those predictions.
Online Serving is a set of modules for online models using the latest data,
which including Online Manager, Online Strategy, Online Tool, Updater.

Here [https://github.com/microsoft/qlib/tree/main/examples/online_srv] are several examples for reference, which demonstrate different features of Online Serving.
If you have many models or task needs to be managed, please consider Task Management.
The examples [https://github.com/microsoft/qlib/tree/main/examples/online_srv] are based on some components in Task Management such as TrainerRM or Collector.

NOTE: User should keep his data source updated to support online serving. For example, Qlib provides a batch of scripts [https://github.com/microsoft/qlib/blob/main/scripts/data_collector/yahoo/README.md#automatic-update-of-daily-frequency-datafrom-yahoo-finance] to help users update Yahoo daily data.

Known limitations currently
- Currently, the daily updating prediction for the next trading day is supported. But generating orders for the next trading day is not supported due to the limitations of public data <https://github.com/microsoft/qlib/issues/215#issuecomment-766293563>_



Online Manager

OnlineManager can manage a set of Online Strategy and run them dynamically.

With the change of time, the decisive models will be also changed. In this module, we call those contributing models online models.
In every routine(such as every day or every minute), the online models may be changed and the prediction of them needs to be updated.
So this module provides a series of methods to control this process.

This module also provides a method to simulate Online Strategy in history.
Which means you can verify your strategy or find a better one.

There are 4 total situations for using different trainers in different situations:







	Situations

	Description





	Online + Trainer

	When you want to do a REAL routine, the Trainer will help you train the models. It
will train models task by task and strategy by strategy.



	Online + DelayTrainer

	DelayTrainer will skip concrete training until all tasks have been prepared by
different strategies. It makes users can parallelly train all tasks at the end of
routine or first_train. Otherwise, these functions will get stuck when each
strategy prepare tasks.



	Simulation + Trainer

	It will behave in the same way as Online + Trainer. The only difference is that it
is for simulation/backtesting instead of online trading



	Simulation + DelayTrainer

	When your models don’t have any temporal dependence, you can use DelayTrainer
for the ability to multitasking. It means all tasks in all routines
can be REAL trained at the end of simulating. The signals will be prepared well at
different time segments (based on whether or not any new model is online).






Here is some pseudo code that demonstrate the workflow of each situation


	For simplicity

	
	Only one strategy is used in the strategy


	update_online_pred is only called in the online mode and is ignored









	Online + Trainer




tasks = first_train()
models = trainer.train(tasks)
trainer.end_train(models)
for day in online_trading_days:
    # OnlineManager.routine
    models = trainer.train(strategy.prepare_tasks())  # for each strategy
    strategy.prepare_online_models(models)  # for each strategy

    trainer.end_train(models)
    prepare_signals()  # prepare trading signals daily





Online + DelayTrainer: the workflow is the same as Online + Trainer.


	Simulation + DelayTrainer




# simulate
tasks = first_train()
models = trainer.train(tasks)
for day in historical_calendars:
    # OnlineManager.routine
    models = trainer.train(strategy.prepare_tasks())  # for each strategy
    strategy.prepare_online_models(models)  # for each strategy
# delay_prepare()
# FIXME: Currently the delay_prepare is not implemented in a proper way.
trainer.end_train(<for all previous models>)
prepare_signals()





# Can we simplify current workflow?


	Can reduce the number of state of tasks?



	For each task, we have three phases (i.e. task, partly trained task, final trained task)












	
class qlib.workflow.online.manager.OnlineManager(strategies: Union[qlib.workflow.online.strategy.OnlineStrategy, List[qlib.workflow.online.strategy.OnlineStrategy]], trainer: qlib.model.trainer.Trainer = None, begin_time: Union[str, pandas._libs.tslibs.timestamps.Timestamp] = None, freq='day')

	OnlineManager can manage online models with Online Strategy.
It also provides a history recording of which models are online at what time.


	
__init__(strategies: Union[qlib.workflow.online.strategy.OnlineStrategy, List[qlib.workflow.online.strategy.OnlineStrategy]], trainer: qlib.model.trainer.Trainer = None, begin_time: Union[str, pandas._libs.tslibs.timestamps.Timestamp] = None, freq='day')

	Init OnlineManager.
One OnlineManager must have at least one OnlineStrategy.


	Parameters

	
	strategies (Union[OnlineStrategy, List[OnlineStrategy]]) – an instance of OnlineStrategy or a list of OnlineStrategy


	begin_time (Union[str,pd.Timestamp], optional) – the OnlineManager will begin at this time. Defaults to None for using the latest date.


	trainer (qlib.model.trainer.Trainer) – the trainer to train task. None for using TrainerR.


	freq (str, optional) – data frequency. Defaults to “day”.













	
first_train(strategies: List[qlib.workflow.online.strategy.OnlineStrategy] = None, model_kwargs: dict = {})

	Get tasks from every strategy’s first_tasks method and train them.
If using DelayTrainer, it can finish training all together after every strategy’s first_tasks.


	Parameters

	
	strategies (List[OnlineStrategy]) – the strategies list (need this param when adding strategies). None for use default strategies.


	model_kwargs (dict) – the params for prepare_online_models













	
routine(cur_time: Union[str, pandas._libs.tslibs.timestamps.Timestamp] = None, task_kwargs: dict = {}, model_kwargs: dict = {}, signal_kwargs: dict = {})

	Typical update process for every strategy and record the online history.

The typical update process after a routine, such as day by day or month by month.
The process is: Update predictions -> Prepare tasks -> Prepare online models -> Prepare signals.

If using DelayTrainer, it can finish training all together after every strategy’s prepare_tasks.


	Parameters

	
	cur_time (Union[str,pd.Timestamp], optional) – run routine method in this time. Defaults to None.


	task_kwargs (dict) – the params for prepare_tasks


	model_kwargs (dict) – the params for prepare_online_models


	signal_kwargs (dict) – the params for prepare_signals













	
get_collector(**kwargs) → qlib.workflow.task.collect.MergeCollector

	Get the instance of Collector to collect results from every strategy.
This collector can be a basis as the signals preparation.


	Parameters

	**kwargs – the params for get_collector.



	Returns

	the collector to merge other collectors.



	Return type

	MergeCollector










	
add_strategy(strategies: Union[qlib.workflow.online.strategy.OnlineStrategy, List[qlib.workflow.online.strategy.OnlineStrategy]])

	Add some new strategies to OnlineManager.


	Parameters

	strategy (Union[OnlineStrategy, List[OnlineStrategy]]) – a list of OnlineStrategy










	
prepare_signals(prepare_func: Callable = <qlib.model.ens.ensemble.AverageEnsemble object>, over_write=False)

	After preparing the data of the last routine (a box in box-plot) which means the end of the routine, we can prepare trading signals for the next routine.

NOTE: Given a set prediction, all signals before these prediction end times will be prepared well.

Even if the latest signal already exists, the latest calculation result will be overwritten.


Note

Given a prediction of a certain time, all signals before this time will be prepared well.




	Parameters

	
	prepare_func (Callable, optional) – Get signals from a dict after collecting. Defaults to AverageEnsemble(), the results collected by MergeCollector must be {xxx:pred}.


	over_write (bool, optional) – If True, the new signals will overwrite. If False, the new signals will append to the end of signals. Defaults to False.






	Returns

	the signals.



	Return type

	pd.DataFrame










	
get_signals() → Union[pandas.core.series.Series, pandas.core.frame.DataFrame]

	Get prepared online signals.


	Returns

	pd.Series for only one signals every datetime.
pd.DataFrame for multiple signals, for example, buy and sell operations use different trading signals.



	Return type

	Union[pd.Series, pd.DataFrame]










	
simulate(end_time=None, frequency='day', task_kwargs={}, model_kwargs={}, signal_kwargs={}) → Union[pandas.core.series.Series, pandas.core.frame.DataFrame]

	Starting from the current time, this method will simulate every routine in OnlineManager until the end time.

Considering the parallel training, the models and signals can be prepared after all routine simulating.

The delay training way can be DelayTrainer and the delay preparing signals way can be delay_prepare.


	Parameters

	
	end_time – the time the simulation will end


	frequency – the calendar frequency


	task_kwargs (dict) – the params for prepare_tasks


	model_kwargs (dict) – the params for prepare_online_models


	signal_kwargs (dict) – the params for prepare_signals






	Returns

	pd.Series for only one signals every datetime.
pd.DataFrame for multiple signals, for example, buy and sell operations use different trading signals.



	Return type

	Union[pd.Series, pd.DataFrame]










	
delay_prepare(model_kwargs={}, signal_kwargs={})

	Prepare all models and signals if something is waiting for preparation.


	Parameters

	
	model_kwargs – the params for end_train


	signal_kwargs – the params for prepare_signals


















Online Strategy

OnlineStrategy module is an element of online serving.


	
class qlib.workflow.online.strategy.OnlineStrategy(name_id: str)

	OnlineStrategy is working with Online Manager, responding to how the tasks are generated, the models are updated and signals are prepared.


	
__init__(name_id: str)

	Init OnlineStrategy.
This module MUST use Trainer to finishing model training.


	Parameters

	
	name_id (str) – a unique name or id.


	trainer (qlib.model.trainer.Trainer, optional) – a instance of Trainer. Defaults to None.













	
prepare_tasks(cur_time, **kwargs) → List[dict]

	After the end of a routine, check whether we need to prepare and train some new tasks based on cur_time (None for latest)..
Return the new tasks waiting for training.

You can find the last online models by OnlineTool.online_models.






	
prepare_online_models(trained_models, cur_time=None) → List[object]

	Select some models from trained models and set them to online models.
This is a typical implementation to online all trained models, you can override it to implement the complex method.
You can find the last online models by OnlineTool.online_models if you still need them.

NOTE: Reset all online models to trained models. If there are no trained models, then do nothing.


	NOTE:

	Current implementation is very naive. Here is a more complex situation which is more closer to the
practical scenarios.
1. Train new models at the day before test_start (at time stamp T)
2. Switch models at the test_start (at time timestamp T + 1 typically)






	Parameters

	
	models (list) – a list of models.


	cur_time (pd.Dataframe) – current time from OnlineManger. None for the latest.






	Returns

	a list of online models.



	Return type

	List[object]










	
first_tasks() → List[dict]

	Generate a series of tasks firstly and return them.






	
get_collector() → qlib.workflow.task.collect.Collector

	Get the instance of Collector to collect different results of this strategy.


	For example:

	
	collect predictions in Recorder


	collect signals in a txt file









	Returns

	Collector














	
class qlib.workflow.online.strategy.RollingStrategy(name_id: str, task_template: Union[dict, List[dict]], rolling_gen: qlib.workflow.task.gen.RollingGen)

	This example strategy always uses the latest rolling model sas online models.


	
__init__(name_id: str, task_template: Union[dict, List[dict]], rolling_gen: qlib.workflow.task.gen.RollingGen)

	Init RollingStrategy.

Assumption: the str of name_id, the experiment name, and the trainer’s experiment name are the same.


	Parameters

	
	name_id (str) – a unique name or id. Will be also the name of the Experiment.


	task_template (Union[dict, List[dict]]) – a list of task_template or a single template, which will be used to generate many tasks using rolling_gen.


	rolling_gen (RollingGen) – an instance of RollingGen













	
get_collector(process_list=[<qlib.model.ens.group.RollingGroup object>], rec_key_func=None, rec_filter_func=None, artifacts_key=None)

	Get the instance of Collector to collect results. The returned collector must distinguish results in different models.

Assumption: the models can be distinguished based on the model name and rolling test segments.
If you do not want this assumption, please implement your method or use another rec_key_func.


	Parameters

	
	rec_key_func (Callable) – a function to get the key of a recorder. If None, use recorder id.


	rec_filter_func (Callable, optional) – filter the recorder by return True or False. Defaults to None.


	artifacts_key (List[str], optional) – the artifacts key you want to get. If None, get all artifacts.













	
first_tasks() → List[dict]

	Use rolling_gen to generate different tasks based on task_template.


	Returns

	a list of tasks



	Return type

	List[dict]










	
prepare_tasks(cur_time) → List[dict]

	Prepare new tasks based on cur_time (None for the latest).

You can find the last online models by OnlineToolR.online_models.


	Returns

	a list of new tasks.



	Return type

	List[dict]















Online Tool

OnlineTool is a module to set and unset a series of online models.
The online models are some decisive models in some time points, which can be changed with the change of time.
This allows us to use efficient submodels as the market-style changing.


	
class qlib.workflow.online.utils.OnlineTool

	OnlineTool will manage online models in an experiment that includes the model recorders.


	
__init__()

	Init OnlineTool.






	
set_online_tag(tag, recorder: Union[list, object])

	Set tag to the model to sign whether online.


	Parameters

	
	tag (str) – the tags in ONLINE_TAG, OFFLINE_TAG


	recorder (Union[list,object]) – the model’s recorder













	
get_online_tag(recorder: object) → str

	Given a model recorder and return its online tag.


	Parameters

	recorder (Object) – the model’s recorder



	Returns

	the online tag



	Return type

	str










	
reset_online_tag(recorder: Union[list, object])

	Offline all models and set the recorders to ‘online’.


	Parameters

	recorder (Union[list,object]) – the recorder you want to reset to ‘online’.










	
online_models() → list

	Get current online models


	Returns

	a list of online models.



	Return type

	list










	
update_online_pred(to_date=None)

	Update the predictions of online models to to_date.


	Parameters

	to_date (pd.Timestamp) – the pred before this date will be updated. None for updating to the latest.














	
class qlib.workflow.online.utils.OnlineToolR(default_exp_name: str = None)

	The implementation of OnlineTool based on (R)ecorder.


	
__init__(default_exp_name: str = None)

	Init OnlineToolR.


	Parameters

	default_exp_name (str) – the default experiment name.










	
set_online_tag(tag, recorder: Union[qlib.workflow.recorder.Recorder, List[T]])

	Set tag to the model’s recorder to sign whether online.


	Parameters

	
	tag (str) – the tags in ONLINE_TAG, NEXT_ONLINE_TAG, OFFLINE_TAG


	recorder (Union[Recorder, List]) – a list of Recorder or an instance of Recorder













	
get_online_tag(recorder: qlib.workflow.recorder.Recorder) → str

	Given a model recorder and return its online tag.


	Parameters

	recorder (Recorder) – an instance of recorder



	Returns

	the online tag



	Return type

	str










	
reset_online_tag(recorder: Union[qlib.workflow.recorder.Recorder, List[T]], exp_name: str = None)

	Offline all models and set the recorders to ‘online’.


	Parameters

	
	recorder (Union[Recorder, List]) – the recorder you want to reset to ‘online’.


	exp_name (str) – the experiment name. If None, then use default_exp_name.













	
online_models(exp_name: str = None) → list

	Get current online models


	Parameters

	exp_name (str) – the experiment name. If None, then use default_exp_name.



	Returns

	a list of online models.



	Return type

	list










	
update_online_pred(to_date=None, from_date=None, exp_name: str = None)

	Update the predictions of online models to to_date.


	Parameters

	
	to_date (pd.Timestamp) – the pred before this date will be updated. None for updating to latest time in Calendar.


	exp_name (str) – the experiment name. If None, then use default_exp_name.


















Updater

Updater is a module to update artifacts such as predictions when the stock data is updating.


	
class qlib.workflow.online.update.RMDLoader(rec: qlib.workflow.recorder.Recorder)

	Recorder Model Dataset Loader


	
__init__(rec: qlib.workflow.recorder.Recorder)

	Initialize self.  See help(type(self)) for accurate signature.






	
get_dataset(start_time, end_time, segments=None, unprepared_dataset: Optional[qlib.data.dataset.DatasetH] = None) → qlib.data.dataset.DatasetH

	Load, config and setup dataset.

This dataset is for inference.


	Parameters

	
	start_time – the start_time of underlying data


	end_time – the end_time of underlying data


	segments – dict
the segments config for dataset
Due to the time series dataset (TSDatasetH), the test segments maybe different from start_time and end_time


	unprepared_dataset – Optional[DatasetH]
if user don’t want to load dataset from recorder, please specify user’s dataset






	Returns

	the instance of DatasetH



	Return type

	DatasetH














	
class qlib.workflow.online.update.RecordUpdater(record: qlib.workflow.recorder.Recorder, *args, **kwargs)

	Update a specific recorders


	
__init__(record: qlib.workflow.recorder.Recorder, *args, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.






	
update(*args, **kwargs)

	Update info for specific recorder










	
class qlib.workflow.online.update.DSBasedUpdater(record: qlib.workflow.recorder.Recorder, to_date=None, from_date=None, hist_ref: Optional[int] = None, freq='day', fname='pred.pkl', loader_cls: type = <class 'qlib.workflow.online.update.RMDLoader'>)

	Dataset-Based Updater


	Providing updating feature for Updating data based on Qlib Dataset




Assumption


	Based on Qlib dataset


	The data to be updated is a multi-level index pd.DataFrame. For example label, prediction.










	
__init__(record: qlib.workflow.recorder.Recorder, to_date=None, from_date=None, hist_ref: Optional[int] = None, freq='day', fname='pred.pkl', loader_cls: type = <class 'qlib.workflow.online.update.RMDLoader'>)

	Init PredUpdater.

Expected behavior in following cases:


	if to_date is greater than the max date in the calendar, the data will be updated to the latest date


	if there are data before from_date or after to_date, only the data between from_date and to_date are affected.





	Parameters

	
	record – Recorder


	to_date – update to prediction to the to_date

if to_date is None:


data will updated to the latest date.







	from_date – the update will start from from_date

if from_date is None:


the updating will occur on the next tick after the latest data in historical data







	hist_ref – int
Sometimes, the dataset will have historical depends.
Leave the problem to users to set the length of historical dependency
If user doesn’t specify this parameter, Updater will try to load dataset to automatically determine the hist_ref


Note

the start_time is not included in the hist_ref; So the hist_ref will be step_len - 1 in most cases






	loader_cls – type
the class to load the model and dataset













	
prepare_data(unprepared_dataset: Optional[qlib.data.dataset.DatasetH] = None) → qlib.data.dataset.DatasetH

	Load dataset
- if unprepared_dataset is specified, then prepare the dataset directly
- Otherwise,

Separating this function will make it easier to reuse the dataset


	Returns

	the instance of DatasetH



	Return type

	DatasetH










	
update(dataset: qlib.data.dataset.DatasetH = None, write: bool = True, ret_new: bool = False) → Optional[object]

	
	Parameters

	
	dataset (DatasetH) – DatasetH: the instance of DatasetH. None for prepare it again.


	write (bool) – will the the write action be executed


	ret_new (bool) – will the updated data be returned






	Returns

	the updated dataset



	Return type

	Optional[object]










	
get_update_data(dataset: qlib.data.dataset.Dataset) → pandas.core.frame.DataFrame

	return the updated data based on the given dataset

The difference between get_update_data and update
- update_date only include some data specific feature
- update include some general routine steps(e.g. prepare dataset, checking)










	
class qlib.workflow.online.update.PredUpdater(record: qlib.workflow.recorder.Recorder, to_date=None, from_date=None, hist_ref: Optional[int] = None, freq='day', fname='pred.pkl', loader_cls: type = <class 'qlib.workflow.online.update.RMDLoader'>)

	Update the prediction in the Recorder


	
get_update_data(dataset: qlib.data.dataset.Dataset) → pandas.core.frame.DataFrame

	return the updated data based on the given dataset

The difference between get_update_data and update
- update_date only include some data specific feature
- update include some general routine steps(e.g. prepare dataset, checking)










	
class qlib.workflow.online.update.LabelUpdater(record: qlib.workflow.recorder.Recorder, to_date=None, **kwargs)

	Update the label in the recorder

Assumption
- The label is generated from record_temp.SignalRecord.


	
__init__(record: qlib.workflow.recorder.Recorder, to_date=None, **kwargs)

	Init PredUpdater.

Expected behavior in following cases:


	if to_date is greater than the max date in the calendar, the data will be updated to the latest date


	if there are data before from_date or after to_date, only the data between from_date and to_date are affected.





	Parameters

	
	record – Recorder


	to_date – update to prediction to the to_date

if to_date is None:


data will updated to the latest date.







	from_date – the update will start from from_date

if from_date is None:


the updating will occur on the next tick after the latest data in historical data







	hist_ref – int
Sometimes, the dataset will have historical depends.
Leave the problem to users to set the length of historical dependency
If user doesn’t specify this parameter, Updater will try to load dataset to automatically determine the hist_ref


Note

the start_time is not included in the hist_ref; So the hist_ref will be step_len - 1 in most cases






	loader_cls – type
the class to load the model and dataset













	
get_update_data(dataset: qlib.data.dataset.Dataset) → pandas.core.frame.DataFrame

	return the updated data based on the given dataset

The difference between get_update_data and update
- update_date only include some data specific feature
- update include some general routine steps(e.g. prepare dataset, checking)













          

      

      

    

  

    
      
          
            
  
Reinforcement Learning in Quantitative Trading



	Guidance
	Beginners to Reinforcement Learning Algorithms

	Reinforcement Learning Algorithm Researcher

	Quantitative Researcher





	Overall
	Reinforcement Learning

	Potential Application Scenarios in Quantitative Trading
	Order Execution

	Portfolio Construction









	Quick Start

	Framework
	EnvWrapper

	Policy

	Training Vessel & Trainer












          

      

      

    

  

    
      
          
            
  
Guidance

QlibRL can help users quickly get started and conveniently implement quantitative strategies based on reinforcement learning(RL) algorithms. For different user groups, we recommend the following guidance to use QlibRL.


Beginners to Reinforcement Learning Algorithms


	Whether you are a quantitative researcher who wants to understand what RL can do in trading or a learner who wants to get started with RL algorithms in trading scenarios, if you have limited knowledge of RL and want to shield various detailed settings to quickly get started with RL algorithms, we recommend the following sequence to learn qlibrl:

	
	Learn the fundamentals of RL in part1 [https://qlib.readthedocs.io/en/latest/component/rl/overall.html#reinforcement-learning].


	Understand the trading scenarios where RL methods can be applied in part2 [https://qlib.readthedocs.io/en/latest/component/rl/overall.html#potential-application-scenarios-in-quantitative-trading].


	Run the examples in part3 [https://qlib.readthedocs.io/en/latest/component/rl/quickstart.html] to solve trading problems using RL.


	If you want to further explore QlibRL and make some customizations, you need to first understand the framework of QlibRL in part4 [https://qlib.readthedocs.io/en/latest/component/rl/framework.html] and rewrite specific components according to your needs.










Reinforcement Learning Algorithm Researcher


	If you are already familiar with existing RL algorithms and dedicated to researching RL algorithms but lack domain knowledge in the financial field, and you want to validate the effectiveness of your algorithms in financial trading scenarios, we recommend the following steps to get started with QlibRL:

	
	Understand the trading scenarios where RL methods can be applied in part2 [https://qlib.readthedocs.io/en/latest/component/rl/overall.html#potential-application-scenarios-in-quantitative-trading].


	Choose an RL application scenario (currently, QlibRL has implemented two scenario examples: order execution and algorithmic trading). Run the example in part3 [https://qlib.readthedocs.io/en/latest/component/rl/quickstart.html] to get it working.


	Modify the policy [https://github.com/microsoft/qlib/blob/main/qlib/rl/order_execution/policy.py] part to incorporate your own RL algorithm.










Quantitative Researcher


	If you have a certain level of financial domain knowledge and coding skills, and you want to explore the application of RL algorithms in the investment field, we recommend the following steps to explore QlibRL:

	
	Learn the fundamentals of RL in part1 [https://qlib.readthedocs.io/en/latest/component/rl/overall.html#reinforcement-learning].


	Understand the trading scenarios where RL methods can be applied in part2 [https://qlib.readthedocs.io/en/latest/component/rl/overall.html#potential-application-scenarios-in-quantitative-trading].


	Run the examples in part3 [https://qlib.readthedocs.io/en/latest/component/rl/quickstart.html] to solve trading problems using RL.


	Understand the framework of QlibRL in part4 [https://qlib.readthedocs.io/en/latest/component/rl/framework.html].


	Choose a suitable RL algorithm based on the characteristics of the problem you want to solve (currently, QlibRL supports PPO and DQN algorithms based on tianshou).


	Design the MDP (Markov Decision Process) process based on market trading rules and the problem you want to solve. Refer to the example in order execution and make corresponding modifications to the following modules: State [https://github.com/microsoft/qlib/blob/main/qlib/rl/order_execution/state.py#L70], Metrics [https://github.com/microsoft/qlib/blob/main/qlib/rl/order_execution/state.py#L18], ActionInterpreter [https://github.com/microsoft/qlib/blob/main/qlib/rl/order_execution/interpreter.py#L199], StateInterpreter [https://github.com/microsoft/qlib/blob/main/qlib/rl/order_execution/interpreter.py#L68], Reward [https://github.com/microsoft/qlib/blob/main/qlib/rl/order_execution/reward.py], Observation [https://github.com/microsoft/qlib/blob/main/qlib/rl/order_execution/interpreter.py#L44], Simulator [https://github.com/microsoft/qlib/blob/main/qlib/rl/order_execution/simulator_simple.py].












          

      

      

    

  

    
      
          
            
  
Reinforcement Learning in Quantitative Trading


Reinforcement Learning

Different from supervised learning tasks such as classification tasks and regression tasks. Another important paradigm in machine learning is Reinforcement Learning(RL),
which attempts to optimize an accumulative numerical reward signal by directly interacting with the environment under a few assumptions such as Markov Decision Process(MDP).

As demonstrated in the following figure, an RL system consists of four elements, 1)the agent 2) the environment the agent interacts with 3) the policy that the agent follows to take actions on the environment and 4)the reward signal from the environment to the agent.
In general, the agent can perceive and interpret its environment, take actions and learn through reward, to seek long-term and maximum overall reward to achieve an optimal solution.

[image: ../../_images/RL_framework.png]
RL attempts to learn to produce actions by trial and error.
By sampling actions and then observing which one leads to our desired outcome, a policy is obtained to generate optimal actions.
In contrast to supervised learning, RL learns this not from a label but from a time-delayed label called a reward.
This scalar value lets us know whether the current outcome is good or bad.
In a word, the target of RL is to take actions to maximize reward.

The Qlib Reinforcement Learning toolkit (QlibRL) is an RL platform for quantitative investment, which provides support to implement the RL algorithms in Qlib.



Potential Application Scenarios in Quantitative Trading

RL methods have demonstrated remarkable achievements in various applications, including game playing, resource allocation, recommendation systems, marketing, and advertising.
In the context of investment, which involves continuous decision-making, let’s consider the example of the stock market. Investors strive to optimize their investment returns by effectively managing their positions and stock holdings through various buying and selling behaviors.
Furthermore, investors carefully evaluate market conditions and stock-specific information before making each buying or selling decision. From an investor’s perspective, this process can be viewed as a continuous decision-making process driven by interactions with the market. RL algorithms offer a promising approach to tackle such challenges.
Here are several scenarios where RL holds potential for application in quantitative investment.


Order Execution

The order execution task is to execute orders efficiently while considering multiple factors, including optimal prices, minimizing trading costs, reducing market impact, maximizing order fullfill rates, and achieving execution within a specified time frame. RL can be applied to such tasks by incorporating these objectives into the reward function and action selection process. Specifically, the RL agent interacts with the market environment, observes the state from market information, and makes decisions on next step execution. The RL algorithm learns an optimal execution strategy through trial and error, aiming to maximize the expected cumulative reward, which incorporates the desired objectives.



	
	General Setting

	
	Environment: The environment represents the financial market where order execution takes place. It encompasses variables such as the order book dynamics, liquidity, price movements, and market conditions.


	State: The state refers to the information available to the RL agent at a given time step. It typically includes features such as the current order book state (bid-ask spread, order depth), historical price data, historical trading volume, market volatility, and any other relevant information that can aid in decision-making.


	Action: The action is the decision made by the RL agent based on the observed state. In order execution, actions can include selecting the order size, price, and timing of execution.


	Reward: The reward is a scalar signal that indicates the performance of the RL agent’s action in the environment. The reward function is designed to encourage actions that lead to efficient and cost-effective order execution. It typically considers multiple objectives, such as maximizing price advantages, minimizing trading costs (including transaction fees and slippage), reducing market impact (the effect of the order on the market price) and maximizing order fullfill rates.










	
	Scenarios

	
	Single-asset order execution: Single-asset order execution focuses on the task of executing a single order for a specific asset, such as a stock or a cryptocurrency. The primary objective is to execute the order efficiently while considering factors such as maximizing price advantages, minimizing trading costs, reducing market impact, and achieving a high fullfill rate. The RL agent interacts with the market environment and makes decisions on order size, price, and timing of execution for that particular asset. The goal is to learn an optimal execution strategy for the single asset, maximizing the expected cumulative reward while considering the specific dynamics and characteristics of that asset.


	Multi-asset order execution: Multi-asset order execution expands the order execution task to involve multiple assets or securities. It typically involves executing a portfolio of orders across different assets simultaneously or sequentially. Unlike single-asset order execution, the focus is not only on the execution of individual orders but also on managing the interactions and dependencies between different assets within the portfolio. The RL agent needs to make decisions on the order sizes, prices, and timings for each asset in the portfolio, considering their interdependencies, cash constraints, market conditions, and transaction costs. The goal is to learn an optimal execution strategy that balances the execution efficiency for each asset while considering the overall performance and objectives of the portfolio as a whole.















The choice of settings and RL algorithm depends on the specific requirements of the task, available data, and desired performance objectives.



Portfolio Construction


	Portfolio construction is a process of selecting and allocating assets in an investment portfolio. RL provides a framework to optimize portfolio management decisions by learning from interactions with the market environment and maximizing long-term returns while considering risk management.

	
	
	General Setting

	
	State: The state represents the current information about the market and the portfolio. It typically includes historical prices and volumes, technical indicators, and other relevant data.


	Action: The action corresponds to the decision of allocating capital to different assets in the portfolio. It determines the weights or proportions of investments in each asset.


	Reward: The reward is a metric that evaluates the performance of the portfolio. It can be defined in various ways, such as total return, risk-adjusted return, or other objectives like maximizing Sharpe ratio or minimizing drawdown.










	
	Scenarios

	
	Stock market: RL can be used to construct portfolios of stocks, where the agent learns to allocate capital among different stocks.


	Cryptocurrency market: RL can be applied to construct portfolios of cryptocurrencies, where the agent learns to make allocation decisions.


	Foreign exchange (Forex) market: RL can be used to construct portfolios of currency pairs, where the agent learns to allocate capital across different currencies based on exchange rate data, economic indicators, and other factors.
















Similarly, the choice of basic setting and algorithm depends on the specific requirements of the problem and the characteristics of the market.






          

      

      

    

  

    
      
          
            
  
Quick Start

QlibRL provides an example of an implementation of a single asset order execution task and the following is an example of the config file to train with QlibRL.

simulator:
    # Each step contains 30mins
    time_per_step: 30
    # Upper bound of volume, should be null or a float between 0 and 1, if it is a float, represent upper bound is calculated by the percentage of the market volume
    vol_limit: null
env:
    # Concurrent environment workers.
    concurrency: 1
    # dummy or subproc or shmem. Corresponding to `parallelism in tianshou <https://tianshou.readthedocs.io/en/master/api/tianshou.env.html#vectorenv>`_.
    parallel_mode: dummy
action_interpreter:
    class: CategoricalActionInterpreter
    kwargs:
        # Candidate actions, it can be a list with length L: [a_1, a_2,..., a_L] or an integer n, in which case the list of length n+1 is auto-generated, i.e., [0, 1/n, 2/n,..., n/n].
        values: 14
        # Total number of steps (an upper-bound estimation)
        max_step: 8
    module_path: qlib.rl.order_execution.interpreter
state_interpreter:
    class: FullHistoryStateInterpreter
    kwargs:
        # Number of dimensions in data.
        data_dim: 6
        # Equal to the total number of records. For example, in SAOE per minute, data_ticks is the length of the day in minutes.
        data_ticks: 240
        # The total number of steps (an upper-bound estimation). For example, 390min / 30min-per-step = 13 steps.
        max_step: 8
        # Provider of the processed data.
        processed_data_provider:
            class: PickleProcessedDataProvider
            module_path: qlib.rl.data.pickle_styled
            kwargs:
                data_dir: ./data/pickle_dataframe/feature
    module_path: qlib.rl.order_execution.interpreter
reward:
    class: PAPenaltyReward
    kwargs:
        # The penalty for a large volume in a short time.
        penalty: 100.0
    module_path: qlib.rl.order_execution.reward
data:
    source:
        order_dir: ./data/training_order_split
        data_dir: ./data/pickle_dataframe/backtest
        # number of time indexes
        total_time: 240
        # start time index
        default_start_time: 0
        # end time index
        default_end_time: 240
        proc_data_dim: 6
    num_workers: 0
    queue_size: 20
network:
    class: Recurrent
    module_path: qlib.rl.order_execution.network
policy:
    class: PPO
    kwargs:
        lr: 0.0001
    module_path: qlib.rl.order_execution.policy
runtime:
    seed: 42
    use_cuda: false
trainer:
    max_epoch: 2
    # Number of episodes collected in each training iteration
    repeat_per_collect: 5
    earlystop_patience: 2
    # Episodes per collect at training.
    episode_per_collect: 20
    batch_size: 16
    # Perform validation every n iterations
    val_every_n_epoch: 1
    checkpoint_path: ./checkpoints
    checkpoint_every_n_iters: 1





And the config file for backtesting:

order_file: ./data/backtest_orders.csv
start_time: "9:45"
end_time: "14:44"
qlib:
    provider_uri_1min: ./data/bin
    feature_root_dir: ./data/pickle
    # feature generated by today's information
    feature_columns_today: [
        "$open", "$high", "$low", "$close", "$vwap", "$volume",
    ]
    # feature generated by yesterday's information
    feature_columns_yesterday: [
        "$open_v1", "$high_v1", "$low_v1", "$close_v1", "$vwap_v1", "$volume_v1",
    ]
exchange:
    # the expression for buying and selling stock limitation
    limit_threshold: ['$close == 0', '$close == 0']
    # deal price for buying and selling
    deal_price: ["If($close == 0, $vwap, $close)", "If($close == 0, $vwap, $close)"]
volume_threshold:
    # volume limits are both buying and selling, "cum" means that this is a cumulative value over time
    all: ["cum", "0.2 * DayCumsum($volume, '9:45', '14:44')"]
    # the volume limits of buying
    buy: ["current", "$close"]
    # the volume limits of selling, "current" means that this is a real-time value and will not accumulate over time
    sell: ["current", "$close"]
strategies:
    30min:
        class: TWAPStrategy
        module_path: qlib.contrib.strategy.rule_strategy
        kwargs: {}
    1day:
        class: SAOEIntStrategy
        module_path: qlib.rl.order_execution.strategy
        kwargs:
        state_interpreter:
            class: FullHistoryStateInterpreter
            module_path: qlib.rl.order_execution.interpreter
            kwargs:
            max_step: 8
            data_ticks: 240
            data_dim: 6
            processed_data_provider:
                class: PickleProcessedDataProvider
                module_path: qlib.rl.data.pickle_styled
                kwargs:
                data_dir: ./data/pickle_dataframe/feature
        action_interpreter:
            class: CategoricalActionInterpreter
            module_path: qlib.rl.order_execution.interpreter
            kwargs:
            values: 14
            max_step: 8
        network:
            class: Recurrent
            module_path: qlib.rl.order_execution.network
            kwargs: {}
        policy:
            class: PPO
            module_path: qlib.rl.order_execution.policy
            kwargs:
                lr: 1.0e-4
                # Local path to the latest model. The model is generated during training, so please run training first if you want to run backtest with a trained policy. You could also remove this parameter file to run backtest with a randomly initialized policy.
                weight_file: ./checkpoints/latest.pth
# Concurrent environment workers.
concurrency: 5





With the above config files, you can start training the agent by the following command:

$ python -m qlib.rl.contrib.train_onpolicy.py --config_path train_config.yml





After the training, you can backtest with the following command:

$ python -m qlib.rl.contrib.backtest.py --config_path backtest_config.yml





In that case, SingleAssetOrderExecution and SingleAssetOrderExecutionSimple as examples for simulator, qlib.rl.order_execution.interpreter.FullHistoryStateInterpreter and qlib.rl.order_execution.interpreter.CategoricalActionInterpreter as examples for interpreter, qlib.rl.order_execution.policy.PPO as an example for policy, and qlib.rl.order_execution.reward.PAPenaltyReward as an example for reward.
For the single asset order execution task, if developers have already defined their simulator/interpreters/reward function/policy, they could launch the training and backtest pipeline by simply modifying the corresponding settings in the config files.
The details about the example can be found here [https://github.com/microsoft/qlib/blob/main/examples/rl/README.md].

In the future, we will provide more examples for different scenarios such as RL-based portfolio construction.




          

      

      

    

  

    
      
          
            
  
The Framework of QlibRL

QlibRL contains a full set of components that cover the entire lifecycle of an RL pipeline, including building the simulator of the market, shaping states & actions, training policies (strategies), and backtesting strategies in the simulated environment.

QlibRL is basically implemented with the support of Tianshou and Gym frameworks. The high-level structure of QlibRL is demonstrated below:

[image: ../../_images/QlibRL_framework.png]
Here, we briefly introduce each component in the figure.


EnvWrapper

EnvWrapper is the complete capsulation of the simulated environment. It receives actions from outside (policy/strategy/agent), simulates the changes in the market, and then replies rewards and updated states, thus forming an interaction loop.

In QlibRL, EnvWrapper is a subclass of gym.Env, so it implements all necessary interfaces of gym.Env. Any classes or pipelines that accept gym.Env should also accept EnvWrapper. Developers do not need to implement their own EnvWrapper to build their own environment. Instead, they only need to implement 4 components of the EnvWrapper:


	
	Simulator

	The simulator is the core component responsible for the environment simulation. Developers could implement all the logic that is directly related to the environment simulation in the Simulator in any way they like. In QlibRL, there are already two implementations of Simulator for single asset trading: 1) SingleAssetOrderExecution, which is built based on Qlib’s backtest toolkits and hence considers a lot of practical trading details but is slow. 2) SimpleSingleAssetOrderExecution, which is built based on a simplified trading simulator, which ignores a lot of details (e.g. trading limitations, rounding) but is quite fast.







	
	State interpreter

	The state interpreter is responsible for “interpret” states in the original format (format provided by the simulator) into states in a format that the policy could understand. For example, transform unstructured raw features into numerical tensors.







	
	Action interpreter

	The action interpreter is similar to the state interpreter. But instead of states, it interprets actions generated by the policy, from the format provided by the policy to the format that is acceptable to the simulator.







	
	Reward function

	The reward function returns a numerical reward to the policy after each time the policy takes an action.









EnvWrapper will organically organize these components. Such decomposition allows for better flexibility in development. For example, if the developers want to train multiple types of policies in the same environment, they only need to design one simulator and design different state interpreters/action interpreters/reward functions for different types of policies.

QlibRL has well-defined base classes for all these 4 components. All the developers need to do is define their own components by inheriting the base classes and then implementing all interfaces required by the base classes. The API for the above base components can be found here.



Policy

QlibRL directly uses Tianshou’s policy. Developers could use policies provided by Tianshou off the shelf, or implement their own policies by inheriting Tianshou’s policies.



Training Vessel & Trainer

As stated by their names, training vessels and trainers are helper classes used in training. A training vessel is a ship that contains a simulator/interpreters/reward function/policy, and it controls algorithm-related parts of training. Correspondingly, the trainer is responsible for controlling the runtime parts of training.

As you may have noticed, a training vessel itself holds all the required components to build an EnvWrapper rather than holding an instance of EnvWrapper directly. This allows the training vessel to create duplicates of EnvWrapper dynamically when necessary (for example, under parallel training).

With a training vessel, the trainer could finally launch the training pipeline by simple, Scikit-learn-like interfaces (i.e., trainer.fit()).

The API for Trainer and TrainingVessel and can be found here.

The RL module is designed in a loosely-coupled way. Currently, RL examples are integrated with concrete business logic.
But the core part of RL is much simpler than what you see.
To demonstrate the simple core of RL, a dedicated notebook [https://github.com/microsoft/qlib/tree/main/examples/rl/simple_example.ipynb] for RL without business loss is created.





          

      

      

    

  

    
      
          
            
  
Building Formulaic Alphas


Introduction

In quantitative trading practice, designing novel factors that can explain and predict future asset returns are of vital importance to the profitability of a strategy. Such factors are usually called alpha factors, or alphas in short.

A formulaic alpha, as the name suggests, is a kind of alpha that can be presented as a formula or a mathematical expression.



Building Formulaic Alphas in Qlib

In Qlib, users can easily build formulaic alphas.


Example

MACD, short for moving average convergence/divergence, is a formulaic alpha used in technical analysis of stock prices. It is designed to reveal changes in the strength, direction, momentum, and duration of a trend in a stock’s price.

MACD can be presented as the following formula:


\[MACD = 2\times (DIF-DEA)\]


Note

DIF means Differential value, which is 12-period EMA minus 26-period EMA.


\[DIF = \frac{EMA(CLOSE, 12) - EMA(CLOSE, 26)}{CLOSE}\]

DEA means a 9-period EMA of the DIF.


\[DEA = \frac{EMA(DIF, 9)}{CLOSE}\]



Users can use Data Handler to build formulaic alphas MACD in qlib:


Note

Users need to initialize Qlib with qlib.init first.  Please refer to initialization.



>> from qlib.data.dataset.loader import QlibDataLoader
>> MACD_EXP = '(EMA($close, 12) - EMA($close, 26))/$close - EMA((EMA($close, 12) - EMA($close, 26))/$close, 9)/$close'
>> fields = [MACD_EXP] # MACD
>> names = ['MACD']
>> labels = ['Ref($close, -2)/Ref($close, -1) - 1'] # label
>> label_names = ['LABEL']
>> data_loader_config = {
..     "feature": (fields, names),
..     "label": (labels, label_names)
.. }
>> data_loader = QlibDataLoader(config=data_loader_config)
>> df = data_loader.load(instruments='csi300', start_time='2010-01-01', end_time='2017-12-31')
>> print(df)
                        feature     label
                           MACD     LABEL
datetime   instrument
2010-01-04 SH600000   -0.011547 -0.019672
           SH600004    0.002745 -0.014721
           SH600006    0.010133  0.002911
           SH600008   -0.001113  0.009818
           SH600009    0.025878 -0.017758
...                         ...       ...
2017-12-29 SZ300124    0.007306 -0.005074
           SZ300136   -0.013492  0.056352
           SZ300144   -0.000966  0.011853
           SZ300251    0.004383  0.021739
           SZ300315   -0.030557  0.012455








Reference

To learn more about Data Loader, please refer to Data Loader

To learn more about Data API, please refer to Data API





          

      

      

    

  

    
      
          
            
  
Online & Offline mode


Introduction

Qlib supports Online mode and Offline mode. Only the Offline mode is introduced in this document.

The Online mode is designed to solve the following problems:


	Manage the data in a centralized way. Users don’t have to manage data of different versions.


	Reduce the amount of cache to be generated.


	Make the data can be accessed in a remote way.






Qlib-Server

Qlib-Server is the assorted server system for Qlib, which utilizes Qlib for basic calculations and provides extensive server system and cache mechanism. With QLibServer, the data provided for Qlib can be managed in a centralized manner. With Qlib-Server, users can use Qlib in Online mode.



Reference

If users are interested in Qlib-Server and Online mode, please refer to Qlib-Server Project [https://github.com/microsoft/qlib-server] and Qlib-Server Document [https://qlib-server.readthedocs.io/en/latest/].





          

      

      

    

  

    
      
          
            
  
Serialization


Introduction

Qlib supports dumping the state of DataHandler, DataSet, Processor and Model, etc. into a disk and reloading them.



Serializable Class

Qlib provides a base class qlib.utils.serial.Serializable, whose state can be dumped into or loaded from disk in pickle format.
When users dump the state of a Serializable instance, the attributes of the instance whose name does not start with _ will be saved on the disk.
However, users can use config method or override default_dump_all attribute to prevent this feature.

Users can also override pickle_backend attribute to choose a pickle backend. The supported value is “pickle” (default and common) and “dill” (dump more things such as function, more information in here [https://pypi.org/project/dill/]).



Example

Qlib’s serializable class includes  DataHandler, DataSet, Processor and Model, etc., which are subclass of  qlib.utils.serial.Serializable.
Specifically, qlib.data.dataset.DatasetH is one of them. Users can serialize DatasetH as follows.

##=============dump dataset=============
dataset.to_pickle(path="dataset.pkl") # dataset is an instance of qlib.data.dataset.DatasetH

##=============reload dataset=============
with open("dataset.pkl", "rb") as file_dataset:
    dataset = pickle.load(file_dataset)






Note

Only state of DatasetH should be saved on the disk, such as some mean and variance used for data normalization, etc.

After reloading the DatasetH, users need to reinitialize it. It means that users can reset some states of DatasetH or QlibDataHandler such as instruments, start_time, end_time and segments, etc.,  and generate new data according to the states (data is not state and should not be saved on the disk).



A more detailed example is in this link [https://github.com/microsoft/qlib/tree/main/examples/highfreq].



API

Please refer to Serializable API.





          

      

      

    

  

    
      
          
            
  
Task Management


Introduction

The Workflow part introduces how to run research workflow in a loosely-coupled way. But it can only execute one task when you use qrun.
To automatically generate and execute different tasks, Task Management provides a whole process including Task Generating, Task Storing, Task Training and Task Collecting.
With this module, users can run their task automatically at different periods, in different losses, or even by different models.The processes of task generation, model training and combine and collect data are shown in the following figure.

[image: ../_images/Task-Gen-Recorder-Collector.svg]

This whole process can be used in Online Serving.

An example of the entire process is shown here [https://github.com/microsoft/qlib/tree/main/examples/model_rolling/task_manager_rolling.py].



Task Generating

A task consists of Model, Dataset, Record, or anything added by users.
The specific task template can be viewed in
Task Section.
Even though the task template is fixed, users can customize their TaskGen to generate different task by task template.

Here is the base class of TaskGen:


	
class qlib.workflow.task.gen.TaskGen

	The base class for generating different tasks

Example 1:


input: a specific task template and rolling steps

output: rolling version of the tasks




Example 2:


input: a specific task template and losses list

output: a set of tasks with different losses





	
generate(task: dict) → List[dict]

	Generate different tasks based on a task template


	Parameters

	task (dict) – a task template



	Returns

	A list of tasks



	Return type

	typing.List[dict]













Qlib provides a class RollingGen [https://github.com/microsoft/qlib/tree/main/qlib/workflow/task/gen.py] to generate a list of task of the dataset in different date segments.
This class allows users to verify the effect of data from different periods on the model in one experiment. More information is here.



Task Storing

To achieve higher efficiency and the possibility of cluster operation, Task Manager will store all tasks in MongoDB [https://www.mongodb.com/].
TaskManager can fetch undone tasks automatically and manage the lifecycle of a set of tasks with error handling.
Users MUST finish the configuration of MongoDB [https://www.mongodb.com/] when using this module.

Users need to provide the MongoDB URL and database name for using TaskManager in initialization or make a statement like this.


from qlib.config import C
C["mongo"] = {
    "task_url" : "mongodb://localhost:27017/", # your MongoDB url
    "task_db_name" : "rolling_db" # database name
}









	
class qlib.workflow.task.manage.TaskManager(task_pool: str)

	Here is what will a task looks like when it created by TaskManager

{
    'def': pickle serialized task definition.  using pickle will make it easier
    'filter': json-like data. This is for filtering the tasks.
    'status': 'waiting' | 'running' | 'done'
    'res': pickle serialized task result,
}





The tasks manager assumes that you will only update the tasks you fetched.
The mongo fetch one and update will make it date updating secure.

This class can be used as a tool from commandline. Here are several examples.
You can view the help of manage module with the following commands:
python -m qlib.workflow.task.manage -h # show manual of manage module CLI
python -m qlib.workflow.task.manage wait -h # show manual of the wait command of manage

python -m qlib.workflow.task.manage -t <pool_name> wait
python -m qlib.workflow.task.manage -t <pool_name> task_stat






Note

Assumption: the data in MongoDB was encoded and the data out of MongoDB was decoded



Here are four status which are:


STATUS_WAITING: waiting for training

STATUS_RUNNING: training

STATUS_PART_DONE: finished some step and waiting for next step

STATUS_DONE: all work done





	
__init__(task_pool: str)

	Init Task Manager, remember to make the statement of MongoDB url and database name firstly.
A TaskManager instance serves a specific task pool.
The static method of this module serves the whole MongoDB.


	Parameters

	task_pool (str) – the name of Collection in MongoDB










	
static list() → list

	List the all collection(task_pool) of the db.


	Returns

	list










	
replace_task(task, new_task)

	Use a new task to replace a old one


	Parameters

	
	task – old task


	new_task – new task













	
insert_task(task)

	Insert a task.


	Parameters

	task – the task waiting for insert



	Returns

	pymongo.results.InsertOneResult










	
insert_task_def(task_def)

	Insert a task to task_pool


	Parameters

	task_def (dict) – the task definition



	Returns

	



	Return type

	pymongo.results.InsertOneResult










	
create_task(task_def_l, dry_run=False, print_nt=False) → List[str]

	If the tasks in task_def_l are new, then insert new tasks into the task_pool, and record inserted_id.
If a task is not new, then just query its _id.


	Parameters

	
	task_def_l (list) – a list of task


	dry_run (bool) – if insert those new tasks to task pool


	print_nt (bool) – if print new task






	Returns

	a list of the _id of task_def_l



	Return type

	List[str]










	
fetch_task(query={}, status='waiting') → dict

	Use query to fetch tasks.


	Parameters

	
	query (dict, optional) – query dict. Defaults to {}.


	status (str, optional) – [description]. Defaults to STATUS_WAITING.






	Returns

	a task(document in collection) after decoding



	Return type

	dict










	
safe_fetch_task(query={}, status='waiting')

	Fetch task from task_pool using query with contextmanager


	Parameters

	query (dict) – the dict of query



	Returns

	dict



	Return type

	a task(document in collection) after decoding










	
query(query={}, decode=True)

	Query task in collection.
This function may raise exception pymongo.errors.CursorNotFound: cursor id not found if it takes too long to iterate the generator

python -m qlib.workflow.task.manage -t <your task pool> query ‘{“_id”: “615498be837d0053acbc5d58”}’


	Parameters

	
	query (dict) – the dict of query


	decode (bool) – 






	Returns

	dict



	Return type

	a task(document in collection) after decoding










	
re_query(_id) → dict

	Use _id to query task.


	Parameters

	_id (str) – _id of a document



	Returns

	a task(document in collection) after decoding



	Return type

	dict










	
commit_task_res(task, res, status='done')

	Commit the result to task[‘res’].


	Parameters

	
	task ([type]) – [description]


	res (object) – the result you want to save


	status (str, optional) – STATUS_WAITING, STATUS_RUNNING, STATUS_DONE, STATUS_PART_DONE. Defaults to STATUS_DONE.













	
return_task(task, status='waiting')

	Return a task to status. Always using in error handling.


	Parameters

	
	task ([type]) – [description]


	status (str, optional) – STATUS_WAITING, STATUS_RUNNING, STATUS_DONE, STATUS_PART_DONE. Defaults to STATUS_WAITING.













	
remove(query={})

	Remove the task using query


	Parameters

	query (dict) – the dict of query










	
task_stat(query={}) → dict

	Count the tasks in every status.


	Parameters

	query (dict, optional) – the query dict. Defaults to {}.



	Returns

	dict










	
reset_waiting(query={})

	Reset all running task into waiting status. Can be used when some running task exit unexpected.


	Parameters

	query (dict, optional) – the query dict. Defaults to {}.










	
prioritize(task, priority: int)

	Set priority for task


	Parameters

	
	task (dict) – The task query from the database


	priority (int) – the target priority













	
wait(query={})

	When multiprocessing, the main progress may fetch nothing from TaskManager because there are still some running tasks.
So main progress should wait until all tasks are trained well by other progress or machines.


	Parameters

	query (dict, optional) – the query dict. Defaults to {}.













More information of Task Manager can be found in here.



Task Training

After generating and storing those task, it’s time to run the task which is in the WAITING status.
Qlib provides a method called run_task to run those task in task pool, however, users can also customize how tasks are executed.
An easy way to get the task_func is using qlib.model.trainer.task_train directly.
It will run the whole workflow defined by task, which includes Model, Dataset, Record.


	
qlib.workflow.task.manage.run_task(task_func: Callable, task_pool: str, query: dict = {}, force_release: bool = False, before_status: str = 'waiting', after_status: str = 'done', **kwargs)

	While the task pool is not empty (has WAITING tasks), use task_func to fetch and run tasks in task_pool

After running this method, here are 4 situations (before_status -> after_status):


STATUS_WAITING -> STATUS_DONE: use task[“def”] as task_func param, it means that the task has not been started

STATUS_WAITING -> STATUS_PART_DONE: use task[“def”] as task_func param

STATUS_PART_DONE -> STATUS_PART_DONE: use task[“res”] as task_func param, it means that the task has been started but not completed

STATUS_PART_DONE -> STATUS_DONE: use task[“res”] as task_func param





	Parameters

	
	task_func (Callable) – def (task_def, **kwargs) -> <res which will be committed>

the function to run the task




	task_pool (str) – the name of the task pool (Collection in MongoDB)


	query (dict) – will use this dict to query task_pool when fetching task


	force_release (bool) – will the program force to release the resource


	before_status (str:) – the tasks in before_status will be fetched and trained. Can be STATUS_WAITING, STATUS_PART_DONE.


	after_status (str:) – the tasks after trained will become after_status. Can be STATUS_WAITING, STATUS_PART_DONE.


	kwargs – the params for task_func












Meanwhile, Qlib provides a module called Trainer.


	
class qlib.model.trainer.Trainer

	The trainer can train a list of models.
There are Trainer and DelayTrainer, which can be distinguished by when it will finish real training.


	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.






	
train(tasks: list, *args, **kwargs) → list

	Given a list of task definitions, begin training, and return the models.

For Trainer, it finishes real training in this method.
For DelayTrainer, it only does some preparation in this method.


	Parameters

	tasks – a list of tasks



	Returns

	a list of models



	Return type

	list










	
end_train(models: list, *args, **kwargs) → list

	Given a list of models, finished something at the end of training if you need.
The models may be Recorder, txt file, database, and so on.

For Trainer, it does some finishing touches in this method.
For DelayTrainer, it finishes real training in this method.


	Parameters

	models – a list of models



	Returns

	a list of models



	Return type

	list










	
is_delay() → bool

	If Trainer will delay finishing end_train.


	Returns

	if DelayTrainer



	Return type

	bool










	
has_worker() → bool

	Some trainer has backend worker to support parallel training
This method can tell if the worker is enabled.


	Returns

	if the worker is enabled



	Return type

	bool










	
worker()

	start the worker


	Raises

	NotImplementedError: – If the worker is not supported













Trainer will train a list of tasks and return a list of model recorders.
Qlib offer two kinds of Trainer, TrainerR is the simplest way and TrainerRM is based on TaskManager to help manager tasks lifecycle automatically.
If you do not want to use Task Manager to manage tasks, then use TrainerR to train a list of tasks generated by TaskGen is enough.
Here are the details about different Trainer.



Task Collecting

Before collecting model training results, you need to use the qlib.init to specify the path of mlruns.

To collect the results of task after training, Qlib provides Collector, Group and Ensemble to collect the results in a readable, expandable and loosely-coupled way.

Collector can collect objects from everywhere and process them such as merging, grouping, averaging and so on. It has 2 step action including collect (collect anything in a dict) and process_collect (process collected dict).

Group also has 2 steps including group (can group a set of object based on group_func and change them to a dict) and reduce (can make a dict become an ensemble based on some rule).
For example: {(A,B,C1): object, (A,B,C2): object} —group—> {(A,B): {C1: object, C2: object}} —reduce—> {(A,B): object}

Ensemble can merge the objects in an ensemble.
For example: {C1: object, C2: object} —Ensemble—> object.
You can set the ensembles you want in the Collector’s process_list.
Common ensembles include AverageEnsemble and RollingEnsemble. Average ensemble is used to ensemble the results of different models in the same time period. Rollingensemble is used to ensemble the results of different models in the same time period

So the hierarchy is Collector’s second step corresponds to Group. And Group’s second step correspond to Ensemble.

For more information, please see Collector, Group and Ensemble, or the example [https://github.com/microsoft/qlib/tree/main/examples/model_rolling/task_manager_rolling.py].





          

      

      

    

  

    
      
          
            
  
(P)oint-(I)n-(T)ime Database


Introduction

Point-in-time data is a very important consideration when performing any sort of historical market analysis.

For example, let’s say we are backtesting a trading strategy and we are using the past five years of historical data as our input.
Our model is assumed to trade once a day, at the market close, and we’ll say we are calculating the trading signal for 1 January 2020 in our backtest. At that point, we should only have data for 1 January 2020, 31 December 2019, 30 December 2019 etc.

In financial data (especially financial reports), the same piece of data may be amended for multiple times overtime.  If we only use the latest version for historical backtesting, data leakage will happen.
Point-in-time database is designed for solving this problem to make sure user get the right version of data at any historical timestamp. It will keep the performance of online trading and historical backtesting the same.



Data Preparation

Qlib provides a crawler to help users to download financial data and then a converter to dump the data in Qlib format.
Please follow scripts/data_collector/pit/README.md [https://github.com/microsoft/qlib/tree/main/scripts/data_collector/pit/] to download and convert data.
Besides, you can find some additional usage examples there.



File-based design for PIT data

Qlib provides a file-based storage for PIT data.

For each feature, it contains 4 columns, i.e. date, period, value, _next.
Each row corresponds to a statement.

The meaning of each feature with filename like XXX_a.data:


	date: the statement’s date of publication.


	
	period: the period of the statement. (e.g. it will be quarterly frequency in most of the markets)

	
	If it is an annual period, it will be an integer corresponding to the year


	If it is an quarterly  periods, it will be an integer like <year><index of quarter>.  The last two decimal digits represents the index of quarter. Others represent the year.










	value: the described value


	_next: the byte index of the next occurance of the field.




Besides the feature data, an index XXX_a.index is included to speed up the querying performance

The statements are soted by the date in ascending order from the beginning of the file.

# the data format from XXXX.data
array([(20070428, 200701, 0.090219  , 4294967295),
       (20070817, 200702, 0.13933   , 4294967295),
       (20071023, 200703, 0.24586301, 4294967295),
       (20080301, 200704, 0.3479    ,         80),
       (20080313, 200704, 0.395989  , 4294967295),
       (20080422, 200801, 0.100724  , 4294967295),
       (20080828, 200802, 0.24996801, 4294967295),
       (20081027, 200803, 0.33412001, 4294967295),
       (20090325, 200804, 0.39011699, 4294967295),
       (20090421, 200901, 0.102675  , 4294967295),
       (20090807, 200902, 0.230712  , 4294967295),
       (20091024, 200903, 0.30072999, 4294967295),
       (20100402, 200904, 0.33546099, 4294967295),
       (20100426, 201001, 0.083825  , 4294967295),
       (20100812, 201002, 0.200545  , 4294967295),
       (20101029, 201003, 0.260986  , 4294967295),
       (20110321, 201004, 0.30739301, 4294967295),
       (20110423, 201101, 0.097411  , 4294967295),
       (20110831, 201102, 0.24825101, 4294967295),
       (20111018, 201103, 0.318919  , 4294967295),
       (20120323, 201104, 0.4039    ,        420),
       (20120411, 201104, 0.403925  , 4294967295),
       (20120426, 201201, 0.112148  , 4294967295),
       (20120810, 201202, 0.26484701, 4294967295),
       (20121026, 201203, 0.370487  , 4294967295),
       (20130329, 201204, 0.45004699, 4294967295),
       (20130418, 201301, 0.099958  , 4294967295),
       (20130831, 201302, 0.21044201, 4294967295),
       (20131016, 201303, 0.30454299, 4294967295),
       (20140325, 201304, 0.394328  , 4294967295),
       (20140425, 201401, 0.083217  , 4294967295),
       (20140829, 201402, 0.16450299, 4294967295),
       (20141030, 201403, 0.23408499, 4294967295),
       (20150421, 201404, 0.319612  , 4294967295),
       (20150421, 201501, 0.078494  , 4294967295),
       (20150828, 201502, 0.137504  , 4294967295),
       (20151023, 201503, 0.201709  , 4294967295),
       (20160324, 201504, 0.26420501, 4294967295),
       (20160421, 201601, 0.073664  , 4294967295),
       (20160827, 201602, 0.136576  , 4294967295),
       (20161029, 201603, 0.188062  , 4294967295),
       (20170415, 201604, 0.244385  , 4294967295),
       (20170425, 201701, 0.080614  , 4294967295),
       (20170728, 201702, 0.15151   , 4294967295),
       (20171026, 201703, 0.25416601, 4294967295),
       (20180328, 201704, 0.32954201, 4294967295),
       (20180428, 201801, 0.088887  , 4294967295),
       (20180802, 201802, 0.170563  , 4294967295),
       (20181029, 201803, 0.25522   , 4294967295),
       (20190329, 201804, 0.34464401, 4294967295),
       (20190425, 201901, 0.094737  , 4294967295),
       (20190713, 201902, 0.        ,       1040),
       (20190718, 201902, 0.175322  , 4294967295),
       (20191016, 201903, 0.25581899, 4294967295)],
      dtype=[('date', '<u4'), ('period', '<u4'), ('value', '<f8'), ('_next', '<u4')])
# - each row contains 20 byte


# The data format from XXXX.index.  It consists of two parts
# 1) the start index of the data. So the first part of the info will be like
2007
# 2) the remain index data will be like information below
#    - The data indicate the **byte index** of first data update of a period.
#    - e.g. Because the info at both byte 80 and 100 corresponds to 200704. The byte index of first occurance (i.e. 100) is recorded in the data.
array([         0,         20,         40,         60,        100,
              120,        140,        160,        180,        200,
              220,        240,        260,        280,        300,
              320,        340,        360,        380,        400,
              440,        460,        480,        500,        520,
              540,        560,        580,        600,        620,
              640,        660,        680,        700,        720,
              740,        760,        780,        800,        820,
              840,        860,        880,        900,        920,
              940,        960,        980,       1000,       1020,
             1060, 4294967295], dtype=uint32)





Known limitations:


	Currently, the PIT database is designed for quarterly or annually factors, which can handle fundamental data of financial reports in most markets.


	Qlib leverage the file name to identify the type of the data. File with name like XXX_q.data corresponds to quarterly data. File with name like XXX_a.data corresponds to annual data.


	The caclulation of PIT is not performed in the optimal way. There is great potential to boost the performance of PIT data calcuation.








          

      

      

    

  

    
      
          
            
  
Code Standard


Docstring

Please use the Numpydoc Style [https://stackoverflow.com/a/24385103].



Continuous Integration

Continuous Integration (CI) tools help you stick to the quality standards by running tests every time you push a new commit and reporting the results to a pull request.

When you submit a PR request, you can check whether your code passes the CI tests in the “check” section at the bottom of the web page.


	Qlib will check the code format with black. The PR will raise error if your code does not align to the standard of Qlib(e.g. a common error is the mixed use of space and tab).

You can fix the bug by inputting the following code in the command line.





pip install black
python -m black . -l 120






	Qlib will check your code style pylint. The checking command is implemented in [github action workflow](https://github.com/microsoft/qlib/blob/0e8b94a552f1c457cfa6cd2c1bb3b87ebb3fb279/.github/workflows/test.yml#L66).
Sometime pylint’s restrictions are not that reasonable. You can ignore specific errors like this




return -ICLoss()(pred, target, index)  # pylint: disable=E1130






	Qlib will check your code style flake8. The checking command is implemented in [github action workflow](https://github.com/microsoft/qlib/blob/0e8b94a552f1c457cfa6cd2c1bb3b87ebb3fb279/.github/workflows/test.yml#L73).

You can fix the bug by inputing the following code in the command line.





flake8 --ignore E501,F541,E402,F401,W503,E741,E266,E203,E302,E731,E262,F523,F821,F811,F841,E713,E265,W291,E712,E722,W293 qlib






	Qlib has integrated pre-commit, which will make it easier for developers to format their code.

Just run the following two commands, and the code will be automatically formatted using black and flake8 when the git commit command is executed.





pip install -e .[dev]
pre-commit install








Development Guidance

As a developer, you often want make changes to Qlib and hope it would reflect directly in your environment without reinstalling it. You can install Qlib in editable mode with following command.
The [dev] option will help you to install some related packages when developing Qlib (e.g. pytest, sphinx)

pip install -e .[dev]








          

      

      

    

  

    
      
          
            
  
API Reference

Here you can find all Qlib interfaces.


Data


Provider


	
class qlib.data.data.ProviderBackendMixin

	This helper class tries to make the provider based on storage backend more convenient
It is not necessary to inherent this class if that provider don’t rely on the backend storage






	
class qlib.data.data.CalendarProvider

	Calendar provider base class

Provide calendar data.


	
calendar(start_time=None, end_time=None, freq='day', future=False)

	Get calendar of certain market in given time range.


	Parameters

	
	start_time (str) – start of the time range.


	end_time (str) – end of the time range.


	freq (str) – time frequency, available: year/quarter/month/week/day.


	future (bool) – whether including future trading day.






	Returns

	calendar list



	Return type

	list










	
locate_index(start_time: Union[pandas._libs.tslibs.timestamps.Timestamp, str], end_time: Union[pandas._libs.tslibs.timestamps.Timestamp, str], freq: str, future: bool = False)

	Locate the start time index and end time index in a calendar under certain frequency.


	Parameters

	
	start_time (pd.Timestamp) – start of the time range.


	end_time (pd.Timestamp) – end of the time range.


	freq (str) – time frequency, available: year/quarter/month/week/day.


	future (bool) – whether including future trading day.






	Returns

	
	pd.Timestamp – the real start time.


	pd.Timestamp – the real end time.


	int – the index of start time.


	int – the index of end time.















	
load_calendar(freq, future)

	Load original calendar timestamp from file.


	Parameters

	
	freq (str) – frequency of read calendar file.


	future (bool) – 






	Returns

	list of timestamps



	Return type

	list














	
class qlib.data.data.InstrumentProvider

	Instrument provider base class

Provide instrument data.


	
static instruments(market: Union[List[T], str] = 'all', filter_pipe: Optional[List[T]] = None)

	Get the general config dictionary for a base market adding several dynamic filters.


	Parameters

	
	market (Union[List, str]) – 
	str:

	market/industry/index shortname, e.g. all/sse/szse/sse50/csi300/csi500.



	list:

	[“ID1”, “ID2”]. A list of stocks








	filter_pipe (list) – the list of dynamic filters.






	Returns

	
	dict (if isinstance(market, str)) – dict of stockpool config.

{market => base market name, filter_pipe => list of filters}

example :



	list (if isinstance(market, list)) – just return the original list directly.
NOTE: this will make the instruments compatible with more cases. The user code will be simpler.















	
list_instruments(instruments, start_time=None, end_time=None, freq='day', as_list=False)

	List the instruments based on a certain stockpool config.


	Parameters

	
	instruments (dict) – stockpool config.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.


	as_list (bool) – return instruments as list or dict.






	Returns

	instruments list or dictionary with time spans



	Return type

	dict or list














	
class qlib.data.data.FeatureProvider

	Feature provider class

Provide feature data.


	
feature(instrument, field, start_time, end_time, freq)

	Get feature data.


	Parameters

	
	instrument (str) – a certain instrument.


	field (str) – a certain field of feature.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.


	freq (str) – time frequency, available: year/quarter/month/week/day.






	Returns

	data of a certain feature



	Return type

	pd.Series














	
class qlib.data.data.PITProvider

	
	
period_feature(instrument, field, start_index: int, end_index: int, cur_time: pandas._libs.tslibs.timestamps.Timestamp, period: Optional[int] = None) → pandas.core.series.Series

	get the historical periods data series between start_index and end_index


	Parameters

	
	start_index (int) – start_index is a relative index to the latest period to cur_time


	end_index (int) – end_index is a relative index to the latest period to cur_time
in most cases, the start_index and end_index will be a non-positive values
For example, start_index == -3 end_index == 0 and current period index is cur_idx,
then the data between [start_index + cur_idx, end_index + cur_idx] will be retrieved.


	period (int) – This is used for query specific period.
The period is represented with int in Qlib. (e.g. 202001 may represent the first quarter in 2020)
NOTE: period  will override start_index and end_index






	Returns

	The index will be integers to indicate the periods of the data
An typical examples will be
TODO



	Return type

	pd.Series



	Raises

	FileNotFoundError – This exception will be raised if the queried data do not exist.














	
class qlib.data.data.ExpressionProvider

	Expression provider class

Provide Expression data.


	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.






	
expression(instrument, field, start_time=None, end_time=None, freq='day') → pandas.core.series.Series

	Get Expression data.

The responsibility of expression
- parse the field and load the according data.
- When loading the data, it should handle the time dependency of the data. get_expression_instance is commonly used in this method


	Parameters

	
	instrument (str) – a certain instrument.


	field (str) – a certain field of feature.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.


	freq (str) – time frequency, available: year/quarter/month/week/day.






	Returns

	data of a certain expression

The data has two types of format


	expression with datetime index


	expression with integer index



	because the datetime is not as good as















	Return type

	pd.Series














	
class qlib.data.data.DatasetProvider

	Dataset provider class

Provide Dataset data.


	
dataset(instruments, fields, start_time=None, end_time=None, freq='day', inst_processors=[])

	Get dataset data.


	Parameters

	
	instruments (list or dict) – list/dict of instruments or dict of stockpool config.


	fields (list) – list of feature instances.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.


	freq (str) – time frequency.


	inst_processors (Iterable[Union[dict, InstProcessor]]) – the operations performed on each instrument






	Returns

	a pandas dataframe with <instrument, datetime> index.



	Return type

	pd.DataFrame










	
static get_instruments_d(instruments, freq)

	Parse different types of input instruments to output instruments_d
Wrong format of input instruments will lead to exception.






	
static get_column_names(fields)

	Get column names from input fields






	
static dataset_processor(instruments_d, column_names, start_time, end_time, freq, inst_processors=[])

	Load and process the data, return the data set.
- default using multi-kernel method.






	
static inst_calculator(inst, start_time, end_time, freq, column_names, spans=None, g_config=None, inst_processors=[])

	Calculate the expressions for one instrument, return a df result.
If the expression has been calculated before, load from cache.

return value: A data frame with index ‘datetime’ and other data columns.










	
class qlib.data.data.LocalCalendarProvider(remote=False, backend={})

	Local calendar data provider class

Provide calendar data from local data source.


	
__init__(remote=False, backend={})

	Initialize self.  See help(type(self)) for accurate signature.






	
load_calendar(freq, future)

	Load original calendar timestamp from file.


	Parameters

	
	freq (str) – frequency of read calendar file.


	future (bool) – 






	Returns

	list of timestamps



	Return type

	list














	
class qlib.data.data.LocalInstrumentProvider(backend={})

	Local instrument data provider class

Provide instrument data from local data source.


	
__init__(backend={}) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
list_instruments(instruments, start_time=None, end_time=None, freq='day', as_list=False)

	List the instruments based on a certain stockpool config.


	Parameters

	
	instruments (dict) – stockpool config.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.


	as_list (bool) – return instruments as list or dict.






	Returns

	instruments list or dictionary with time spans



	Return type

	dict or list














	
class qlib.data.data.LocalFeatureProvider(remote=False, backend={})

	Local feature data provider class

Provide feature data from local data source.


	
__init__(remote=False, backend={})

	Initialize self.  See help(type(self)) for accurate signature.






	
feature(instrument, field, start_index, end_index, freq)

	Get feature data.


	Parameters

	
	instrument (str) – a certain instrument.


	field (str) – a certain field of feature.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.


	freq (str) – time frequency, available: year/quarter/month/week/day.






	Returns

	data of a certain feature



	Return type

	pd.Series














	
class qlib.data.data.LocalPITProvider

	
	
period_feature(instrument, field, start_index, end_index, cur_time, period=None)

	get the historical periods data series between start_index and end_index


	Parameters

	
	start_index (int) – start_index is a relative index to the latest period to cur_time


	end_index (int) – end_index is a relative index to the latest period to cur_time
in most cases, the start_index and end_index will be a non-positive values
For example, start_index == -3 end_index == 0 and current period index is cur_idx,
then the data between [start_index + cur_idx, end_index + cur_idx] will be retrieved.


	period (int) – This is used for query specific period.
The period is represented with int in Qlib. (e.g. 202001 may represent the first quarter in 2020)
NOTE: period  will override start_index and end_index






	Returns

	The index will be integers to indicate the periods of the data
An typical examples will be
TODO



	Return type

	pd.Series



	Raises

	FileNotFoundError – This exception will be raised if the queried data do not exist.














	
class qlib.data.data.LocalExpressionProvider(time2idx=True)

	Local expression data provider class

Provide expression data from local data source.


	
__init__(time2idx=True)

	Initialize self.  See help(type(self)) for accurate signature.






	
expression(instrument, field, start_time=None, end_time=None, freq='day')

	Get Expression data.

The responsibility of expression
- parse the field and load the according data.
- When loading the data, it should handle the time dependency of the data. get_expression_instance is commonly used in this method


	Parameters

	
	instrument (str) – a certain instrument.


	field (str) – a certain field of feature.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.


	freq (str) – time frequency, available: year/quarter/month/week/day.






	Returns

	data of a certain expression

The data has two types of format


	expression with datetime index


	expression with integer index



	because the datetime is not as good as















	Return type

	pd.Series














	
class qlib.data.data.LocalDatasetProvider(align_time: bool = True)

	Local dataset data provider class

Provide dataset data from local data source.


	
__init__(align_time: bool = True)

	
	Parameters

	align_time (bool) – Will we align the time to calendar
the frequency is flexible in some dataset and can’t be aligned.
For the data with fixed frequency with a shared calendar, the align data to the calendar will provides following benefits


	Align queries to the same parameters, so the cache can be shared.















	
dataset(instruments, fields, start_time=None, end_time=None, freq='day', inst_processors=[])

	Get dataset data.


	Parameters

	
	instruments (list or dict) – list/dict of instruments or dict of stockpool config.


	fields (list) – list of feature instances.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.


	freq (str) – time frequency.


	inst_processors (Iterable[Union[dict, InstProcessor]]) – the operations performed on each instrument






	Returns

	a pandas dataframe with <instrument, datetime> index.



	Return type

	pd.DataFrame










	
static multi_cache_walker(instruments, fields, start_time=None, end_time=None, freq='day')

	This method is used to prepare the expression cache for the client.
Then the client will load the data from expression cache by itself.






	
static cache_walker(inst, start_time, end_time, freq, column_names)

	If the expressions of one instrument haven’t been calculated before,
calculate it and write it into expression cache.










	
class qlib.data.data.ClientCalendarProvider

	Client calendar data provider class

Provide calendar data by requesting data from server as a client.


	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.






	
calendar(start_time=None, end_time=None, freq='day', future=False)

	Get calendar of certain market in given time range.


	Parameters

	
	start_time (str) – start of the time range.


	end_time (str) – end of the time range.


	freq (str) – time frequency, available: year/quarter/month/week/day.


	future (bool) – whether including future trading day.






	Returns

	calendar list



	Return type

	list














	
class qlib.data.data.ClientInstrumentProvider

	Client instrument data provider class

Provide instrument data by requesting data from server as a client.


	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.






	
list_instruments(instruments, start_time=None, end_time=None, freq='day', as_list=False)

	List the instruments based on a certain stockpool config.


	Parameters

	
	instruments (dict) – stockpool config.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.


	as_list (bool) – return instruments as list or dict.






	Returns

	instruments list or dictionary with time spans



	Return type

	dict or list














	
class qlib.data.data.ClientDatasetProvider

	Client dataset data provider class

Provide dataset data by requesting data from server as a client.


	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.






	
dataset(instruments, fields, start_time=None, end_time=None, freq='day', disk_cache=0, return_uri=False, inst_processors=[])

	Get dataset data.


	Parameters

	
	instruments (list or dict) – list/dict of instruments or dict of stockpool config.


	fields (list) – list of feature instances.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.


	freq (str) – time frequency.


	inst_processors (Iterable[Union[dict, InstProcessor]]) – the operations performed on each instrument






	Returns

	a pandas dataframe with <instrument, datetime> index.



	Return type

	pd.DataFrame














	
class qlib.data.data.BaseProvider

	Local provider class
It is a set of interface that allow users to access data.
Because PITD is not exposed publicly to users, so it is not included in the interface.

To keep compatible with old qlib provider.


	
features(instruments, fields, start_time=None, end_time=None, freq='day', disk_cache=None, inst_processors=[])

	
	Parameters

	disk_cache (int) – whether to skip(0)/use(1)/replace(2) disk_cache





This function will try to use cache method which has a keyword disk_cache,
and will use provider method if a type error is raised because the DatasetD instance
is a provider class.










	
class qlib.data.data.LocalProvider

	
	
features_uri(instruments, fields, start_time, end_time, freq, disk_cache=1)

	Return the uri of the generated cache of features/dataset


	Parameters

	
	disk_cache – 


	instruments – 


	fields – 


	start_time – 


	end_time – 


	freq – 

















	
class qlib.data.data.ClientProvider

	Client Provider

Requesting data from server as a client. Can propose requests:



	Calendar : Directly respond a list of calendars


	Instruments (without filter): Directly respond a list/dict of instruments


	Instruments (with filters):  Respond a list/dict of instruments


	Features : Respond a cache uri







The general workflow is described as follows:
When the user use client provider to propose a request, the client provider will connect the server and send the request. The client will start to wait for the response. The response will be made instantly indicating whether the cache is available. The waiting procedure will terminate only when the client get the response saying feature_available is true.
BUG : Everytime we make request for certain data we need to connect to the server, wait for the response and disconnect from it. We can’t make a sequence of requests within one connection. You can refer to https://python-socketio.readthedocs.io/en/latest/client.html for documentation of python-socketIO client.


	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.










	
qlib.data.data.CalendarProviderWrapper

	alias of qlib.data.data.CalendarProvider






	
qlib.data.data.InstrumentProviderWrapper

	alias of qlib.data.data.InstrumentProvider






	
qlib.data.data.FeatureProviderWrapper

	alias of qlib.data.data.FeatureProvider






	
qlib.data.data.PITProviderWrapper

	alias of qlib.data.data.PITProvider






	
qlib.data.data.ExpressionProviderWrapper

	alias of qlib.data.data.ExpressionProvider






	
qlib.data.data.DatasetProviderWrapper

	alias of qlib.data.data.DatasetProvider






	
qlib.data.data.BaseProviderWrapper

	alias of qlib.data.data.BaseProvider






	
qlib.data.data.register_all_wrappers(C)

	





Filter


	
class qlib.data.filter.BaseDFilter

	Dynamic Instruments Filter Abstract class

Users can override this class to construct their own filter

Override __init__ to input filter regulations

Override filter_main to use the regulations to filter instruments


	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.






	
static from_config(config)

	Construct an instance from config dict.


	Parameters

	config (dict) – dict of config parameters.










	
to_config()

	Construct an instance from config dict.


	Returns

	return the dict of config parameters.



	Return type

	dict














	
class qlib.data.filter.SeriesDFilter(fstart_time=None, fend_time=None, keep=False)

	Dynamic Instruments Filter Abstract class to filter a series of certain features

Filters should provide parameters:


	filter start time


	filter end time


	filter rule




Override __init__ to assign a certain rule to filter the series.

Override _getFilterSeries to use the rule to filter the series and get a dict of {inst => series}, or override filter_main for more advanced series filter rule


	
__init__(fstart_time=None, fend_time=None, keep=False)

	
	Init function for filter base class.

	Filter a set of instruments based on a certain rule within a certain period assigned by fstart_time and fend_time.






	Parameters

	
	fstart_time (str) – the time for the filter rule to start filter the instruments.


	fend_time (str) – the time for the filter rule to stop filter the instruments.


	keep (bool) – whether to keep the instruments of which features don’t exist in the filter time span.













	
filter_main(instruments, start_time=None, end_time=None)

	Implement this method to filter the instruments.


	Parameters

	
	instruments (dict) – input instruments to be filtered.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.






	Returns

	filtered instruments, same structure as input instruments.



	Return type

	dict














	
class qlib.data.filter.NameDFilter(name_rule_re, fstart_time=None, fend_time=None)

	Name dynamic instrument filter

Filter the instruments based on a regulated name format.

A name rule regular expression is required.


	
__init__(name_rule_re, fstart_time=None, fend_time=None)

	Init function for name filter class


	Parameters

	name_rule_re (str) – regular expression for the name rule.










	
static from_config(config)

	Construct an instance from config dict.


	Parameters

	config (dict) – dict of config parameters.










	
to_config()

	Construct an instance from config dict.


	Returns

	return the dict of config parameters.



	Return type

	dict














	
class qlib.data.filter.ExpressionDFilter(rule_expression, fstart_time=None, fend_time=None, keep=False)

	Expression dynamic instrument filter

Filter the instruments based on a certain expression.

An expression rule indicating a certain feature field is required.

Examples


	basic features filter : rule_expression = ‘$close/$open>5’


	cross-sectional features filter : rule_expression = ‘$rank($close)<10’


	time-sequence features filter : rule_expression = ‘$Ref($close, 3)>100’





	
__init__(rule_expression, fstart_time=None, fend_time=None, keep=False)

	Init function for expression filter class


	Parameters

	
	fstart_time (str) – filter the feature starting from this time.


	fend_time (str) – filter the feature ending by this time.


	rule_expression (str) – an input expression for the rule.













	
static from_config(config)

	Construct an instance from config dict.


	Parameters

	config (dict) – dict of config parameters.










	
to_config()

	Construct an instance from config dict.


	Returns

	return the dict of config parameters.



	Return type

	dict















Class


	
class qlib.data.base.Expression

	Expression base class

Expression is designed to handle the calculation of data with the format below
data with two dimension for each instrument,


	feature


	time:  it  could be observation time or period time.



	period time is designed for Point-in-time database.  For example, the period time maybe 2014Q4, its value can observed for multiple times(different value may be observed at different time due to amendment).












	
load(instrument, start_index, end_index, *args)

	load  feature
This function is responsible for loading feature/expression based on the expression engine.

The concrete implementation will be separated into two parts:


	caching data, handle errors.



	This part is shared by all the expressions and implemented in Expression









	processing and calculating data based on the specific expression.



	This part is different in each expression and implemented in each expression











Expression Engine is shared by different data.
Different data will have different extra information for args.


	Parameters

	
	instrument (str) – instrument code.


	start_index (str) – feature start index [in calendar].


	end_index (str) – feature end  index  [in calendar].


	may contain following information (*args) – 


	if it is used in basic expression engine data, it contains following arguments (1)) – 
	freq: str

	feature frequency.








	if is used in PIT data, it contains following arguments (2)) – 
	cur_pit:

	it is designed for the point-in-time data.



	period: int

	This is used for query specific period.
The period is represented with int in Qlib. (e.g. 202001 may represent the first quarter in 2020)












	Returns

	feature series: The index of the series is the calendar index



	Return type

	pd.Series










	
get_longest_back_rolling()

	Get the longest length of historical data the feature has accessed

This is designed for getting the needed range of the data to calculate
the features in specific range at first.  However, situations like
Ref(Ref($close, -1), 1) can not be handled rightly.

So this will only used for detecting the length of historical data needed.






	
get_extended_window_size()

	get_extend_window_size

For to calculate this Operator in range[start_index, end_index]
We have to get the leaf feature in
range[start_index - lft_etd, end_index + rght_etd].


	Returns

	lft_etd, rght_etd



	Return type

	(int, int)














	
class qlib.data.base.Feature(name=None)

	Static Expression

This kind of feature will load data from provider


	
__init__(name=None)

	Initialize self.  See help(type(self)) for accurate signature.






	
get_longest_back_rolling()

	Get the longest length of historical data the feature has accessed

This is designed for getting the needed range of the data to calculate
the features in specific range at first.  However, situations like
Ref(Ref($close, -1), 1) can not be handled rightly.

So this will only used for detecting the length of historical data needed.






	
get_extended_window_size()

	get_extend_window_size

For to calculate this Operator in range[start_index, end_index]
We have to get the leaf feature in
range[start_index - lft_etd, end_index + rght_etd].


	Returns

	lft_etd, rght_etd



	Return type

	(int, int)














	
class qlib.data.base.PFeature(name=None)

	




	
class qlib.data.base.ExpressionOps

	Operator Expression

This kind of feature will use operator for feature
construction on the fly.







Operator


	
class qlib.data.ops.ElemOperator(feature)

	Element-wise Operator


	Parameters

	feature (Expression) – feature instance



	Returns

	feature operation output



	Return type

	Expression






	
__init__(feature)

	Initialize self.  See help(type(self)) for accurate signature.






	
get_longest_back_rolling()

	Get the longest length of historical data the feature has accessed

This is designed for getting the needed range of the data to calculate
the features in specific range at first.  However, situations like
Ref(Ref($close, -1), 1) can not be handled rightly.

So this will only used for detecting the length of historical data needed.






	
get_extended_window_size()

	get_extend_window_size

For to calculate this Operator in range[start_index, end_index]
We have to get the leaf feature in
range[start_index - lft_etd, end_index + rght_etd].


	Returns

	lft_etd, rght_etd



	Return type

	(int, int)














	
class qlib.data.ops.ChangeInstrument(instrument, feature)

	Change Instrument Operator
In some case, one may want to change to another instrument when calculating, for example, to
calculate beta of a stock with respect to a market index.
This would require changing the calculation of features from the stock (original instrument) to
the index (reference instrument)
:param instrument: i.e., SH000300 (CSI300 index), or ^GPSC (SP500 index).
:type instrument: new instrument for which the downstream operations should be performed upon.
:param feature:
:type feature: the feature to be calculated for the new instrument.


	Returns

	feature operation output



	Return type

	Expression






	
__init__(instrument, feature)

	Initialize self.  See help(type(self)) for accurate signature.






	
load(instrument, start_index, end_index, *args)

	load  feature
This function is responsible for loading feature/expression based on the expression engine.

The concrete implementation will be separated into two parts:


	caching data, handle errors.



	This part is shared by all the expressions and implemented in Expression









	processing and calculating data based on the specific expression.



	This part is different in each expression and implemented in each expression











Expression Engine is shared by different data.
Different data will have different extra information for args.


	Parameters

	
	instrument (str) – instrument code.


	start_index (str) – feature start index [in calendar].


	end_index (str) – feature end  index  [in calendar].


	may contain following information (*args) – 


	if it is used in basic expression engine data, it contains following arguments (1)) – 
	freq: str

	feature frequency.








	if is used in PIT data, it contains following arguments (2)) – 
	cur_pit:

	it is designed for the point-in-time data.



	period: int

	This is used for query specific period.
The period is represented with int in Qlib. (e.g. 202001 may represent the first quarter in 2020)












	Returns

	feature series: The index of the series is the calendar index



	Return type

	pd.Series














	
class qlib.data.ops.NpElemOperator(feature, func)

	Numpy Element-wise Operator


	Parameters

	
	feature (Expression) – feature instance


	func (str) – numpy feature operation method






	Returns

	feature operation output



	Return type

	Expression






	
__init__(feature, func)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Abs(feature)

	Feature Absolute Value


	Parameters

	feature (Expression) – feature instance



	Returns

	a feature instance with absolute output



	Return type

	Expression






	
__init__(feature)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Sign(feature)

	Feature Sign


	Parameters

	feature (Expression) – feature instance



	Returns

	a feature instance with sign



	Return type

	Expression






	
__init__(feature)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Log(feature)

	Feature Log


	Parameters

	feature (Expression) – feature instance



	Returns

	a feature instance with log



	Return type

	Expression






	
__init__(feature)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Mask(feature, instrument)

	Feature Mask


	Parameters

	
	feature (Expression) – feature instance


	instrument (str) – instrument mask






	Returns

	a feature instance with masked instrument



	Return type

	Expression






	
__init__(feature, instrument)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Not(feature)

	Not Operator


	Parameters

	feature (Expression) – feature instance



	Returns

	feature elementwise not output



	Return type

	Feature






	
__init__(feature)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.PairOperator(feature_left, feature_right)

	Pair-wise operator


	Parameters

	
	feature_left (Expression) – feature instance or numeric value


	feature_right (Expression) – feature instance or numeric value






	Returns

	two features’ operation output



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.






	
get_longest_back_rolling()

	Get the longest length of historical data the feature has accessed

This is designed for getting the needed range of the data to calculate
the features in specific range at first.  However, situations like
Ref(Ref($close, -1), 1) can not be handled rightly.

So this will only used for detecting the length of historical data needed.






	
get_extended_window_size()

	get_extend_window_size

For to calculate this Operator in range[start_index, end_index]
We have to get the leaf feature in
range[start_index - lft_etd, end_index + rght_etd].


	Returns

	lft_etd, rght_etd



	Return type

	(int, int)














	
class qlib.data.ops.NpPairOperator(feature_left, feature_right, func)

	Numpy Pair-wise operator


	Parameters

	
	feature_left (Expression) – feature instance or numeric value


	feature_right (Expression) – feature instance or numeric value


	func (str) – operator function






	Returns

	two features’ operation output



	Return type

	Feature






	
__init__(feature_left, feature_right, func)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Power(feature_left, feature_right)

	Power Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	The bases in feature_left raised to the exponents in feature_right



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Add(feature_left, feature_right)

	Add Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	two features’ sum



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Sub(feature_left, feature_right)

	Subtract Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	two features’ subtraction



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Mul(feature_left, feature_right)

	Multiply Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	two features’ product



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Div(feature_left, feature_right)

	Division Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	two features’ division



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Greater(feature_left, feature_right)

	Greater Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	greater elements taken from the input two features



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Less(feature_left, feature_right)

	Less Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	smaller elements taken from the input two features



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Gt(feature_left, feature_right)

	Greater Than Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	bool series indicate left > right



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Ge(feature_left, feature_right)

	Greater Equal Than Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	bool series indicate left >= right



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Lt(feature_left, feature_right)

	Less Than Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	bool series indicate left < right



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Le(feature_left, feature_right)

	Less Equal Than Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	bool series indicate left <= right



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Eq(feature_left, feature_right)

	Equal Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	bool series indicate left == right



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Ne(feature_left, feature_right)

	Not Equal Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	bool series indicate left != right



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.And(feature_left, feature_right)

	And Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	two features’ row by row & output



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Or(feature_left, feature_right)

	Or Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance






	Returns

	two features’ row by row | outputs



	Return type

	Feature






	
__init__(feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.If(condition, feature_left, feature_right)

	If Operator


	Parameters

	
	condition (Expression) – feature instance with bool values as condition


	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance









	
__init__(condition, feature_left, feature_right)

	Initialize self.  See help(type(self)) for accurate signature.






	
get_longest_back_rolling()

	Get the longest length of historical data the feature has accessed

This is designed for getting the needed range of the data to calculate
the features in specific range at first.  However, situations like
Ref(Ref($close, -1), 1) can not be handled rightly.

So this will only used for detecting the length of historical data needed.






	
get_extended_window_size()

	get_extend_window_size

For to calculate this Operator in range[start_index, end_index]
We have to get the leaf feature in
range[start_index - lft_etd, end_index + rght_etd].


	Returns

	lft_etd, rght_etd



	Return type

	(int, int)














	
class qlib.data.ops.Rolling(feature, N, func)

	Rolling Operator
The meaning of rolling and expanding is the same in pandas.
When the window is set to 0, the behaviour of the operator should follow expanding
Otherwise, it follows rolling


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size


	func (str) – rolling method






	Returns

	rolling outputs



	Return type

	Expression






	
__init__(feature, N, func)

	Initialize self.  See help(type(self)) for accurate signature.






	
get_longest_back_rolling()

	Get the longest length of historical data the feature has accessed

This is designed for getting the needed range of the data to calculate
the features in specific range at first.  However, situations like
Ref(Ref($close, -1), 1) can not be handled rightly.

So this will only used for detecting the length of historical data needed.






	
get_extended_window_size()

	get_extend_window_size

For to calculate this Operator in range[start_index, end_index]
We have to get the leaf feature in
range[start_index - lft_etd, end_index + rght_etd].


	Returns

	lft_etd, rght_etd



	Return type

	(int, int)














	
class qlib.data.ops.Ref(feature, N)

	Feature Reference


	Parameters

	
	feature (Expression) – feature instance


	N (int) – N = 0, retrieve the first data; N > 0, retrieve data of N periods ago; N < 0, future data






	Returns

	a feature instance with target reference



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.






	
get_longest_back_rolling()

	Get the longest length of historical data the feature has accessed

This is designed for getting the needed range of the data to calculate
the features in specific range at first.  However, situations like
Ref(Ref($close, -1), 1) can not be handled rightly.

So this will only used for detecting the length of historical data needed.






	
get_extended_window_size()

	get_extend_window_size

For to calculate this Operator in range[start_index, end_index]
We have to get the leaf feature in
range[start_index - lft_etd, end_index + rght_etd].


	Returns

	lft_etd, rght_etd



	Return type

	(int, int)














	
class qlib.data.ops.Mean(feature, N)

	Rolling Mean (MA)


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling average



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Sum(feature, N)

	Rolling Sum


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling sum



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Std(feature, N)

	Rolling Std


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling std



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Var(feature, N)

	Rolling Variance


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling variance



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Skew(feature, N)

	Rolling Skewness


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling skewness



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Kurt(feature, N)

	Rolling Kurtosis


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling kurtosis



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Max(feature, N)

	Rolling Max


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling max



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.IdxMax(feature, N)

	Rolling Max Index


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling max index



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Min(feature, N)

	Rolling Min


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling min



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.IdxMin(feature, N)

	Rolling Min Index


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling min index



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Quantile(feature, N, qscore)

	Rolling Quantile


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling quantile



	Return type

	Expression






	
__init__(feature, N, qscore)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Med(feature, N)

	Rolling Median


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling median



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Mad(feature, N)

	Rolling Mean Absolute Deviation


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling mean absolute deviation



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Rank(feature, N)

	Rolling Rank (Percentile)


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling rank



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Count(feature, N)

	Rolling Count


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling count of number of non-NaN elements



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Delta(feature, N)

	Rolling Delta


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with end minus start in rolling window



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Slope(feature, N)

	Rolling Slope
This operator calculate the slope between idx and feature.
(e.g. [<feature_t1>, <feature_t2>, <feature_t3>] and [1, 2, 3])

Usage Example:
- “Slope($close, %d)/$close”

# TODO:
# Some users may want pair-wise rolling like Slope(A, B, N)


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with linear regression slope of given window



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Rsquare(feature, N)

	Rolling R-value Square


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with linear regression r-value square of given window



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Resi(feature, N)

	Rolling Regression Residuals


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with regression residuals of given window



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.WMA(feature, N)

	Rolling WMA


	Parameters

	
	feature (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with weighted moving average output



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.EMA(feature, N)

	Rolling Exponential Mean (EMA)


	Parameters

	
	feature (Expression) – feature instance


	N (int, float) – rolling window size






	Returns

	a feature instance with regression r-value square of given window



	Return type

	Expression






	
__init__(feature, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.PairRolling(feature_left, feature_right, N, func)

	Pair Rolling Operator


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling output of two input features



	Return type

	Expression






	
__init__(feature_left, feature_right, N, func)

	Initialize self.  See help(type(self)) for accurate signature.






	
get_longest_back_rolling()

	Get the longest length of historical data the feature has accessed

This is designed for getting the needed range of the data to calculate
the features in specific range at first.  However, situations like
Ref(Ref($close, -1), 1) can not be handled rightly.

So this will only used for detecting the length of historical data needed.






	
get_extended_window_size()

	get_extend_window_size

For to calculate this Operator in range[start_index, end_index]
We have to get the leaf feature in
range[start_index - lft_etd, end_index + rght_etd].


	Returns

	lft_etd, rght_etd



	Return type

	(int, int)














	
class qlib.data.ops.Corr(feature_left, feature_right, N)

	Rolling Correlation


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling correlation of two input features



	Return type

	Expression






	
__init__(feature_left, feature_right, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.Cov(feature_left, feature_right, N)

	Rolling Covariance


	Parameters

	
	feature_left (Expression) – feature instance


	feature_right (Expression) – feature instance


	N (int) – rolling window size






	Returns

	a feature instance with rolling max of two input features



	Return type

	Expression






	
__init__(feature_left, feature_right, N)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.ops.TResample(feature, freq, func)

	
	
__init__(feature, freq, func)

	Resampling the data to target frequency.
The resample function of pandas is used.


	the timestamp will be at the start of the time span after resample.





	Parameters

	
	feature (Expression) – An expression for calculating the feature


	freq (str) – It will be passed into the resample method for resampling basedn on given frequency


	func (method) – The method to get the resampled values
Some expression are high frequently used

















	
class qlib.data.ops.OpsWrapper

	Ops Wrapper


	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.






	
register(ops_list: List[Union[Type[qlib.data.base.ExpressionOps], dict]])

	register operator


	Parameters

	ops_list (List[Union[Type[ExpressionOps], dict]]) – 
	if type(ops_list) is List[Type[ExpressionOps]], each element of ops_list represents the operator class, which should be the subclass of ExpressionOps.


	if type(ops_list) is List[dict], each element of ops_list represents the config of operator, which has the following format:


{
    "class": class_name,
    "module_path": path,
}





Note: class should be the class name of operator, module_path should be a python module or path of file.























	
qlib.data.ops.register_all_ops(C)

	register all operator







Cache


	
class qlib.data.cache.MemCacheUnit(*args, **kwargs)

	Memory Cache Unit.


	
__init__(*args, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.






	
limited

	whether memory cache is limited










	
class qlib.data.cache.MemCache(mem_cache_size_limit=None, limit_type='length')

	Memory cache.


	
__init__(mem_cache_size_limit=None, limit_type='length')

	
	Parameters

	
	mem_cache_size_limit – cache max size.


	limit_type – length or sizeof; length(call fun: len), size(call fun: sys.getsizeof).

















	
class qlib.data.cache.ExpressionCache(provider)

	Expression cache mechanism base class.

This class is used to wrap expression provider with self-defined expression cache mechanism.


Note

Override the _uri and _expression method to create your own expression cache mechanism.




	
expression(instrument, field, start_time, end_time, freq)

	Get expression data.


Note

Same interface as expression method in expression provider








	
update(cache_uri: Union[str, pathlib.Path], freq: str = 'day')

	Update expression cache to latest calendar.

Override this method to define how to update expression cache corresponding to users’ own cache mechanism.


	Parameters

	
	cache_uri (str or Path) – the complete uri of expression cache file (include dir path).


	freq (str) – 






	Returns

	0(successful update)/ 1(no need to update)/ 2(update failure).



	Return type

	int














	
class qlib.data.cache.DatasetCache(provider)

	Dataset cache mechanism base class.

This class is used to wrap dataset provider with self-defined dataset cache mechanism.


Note

Override the _uri and _dataset method to create your own dataset cache mechanism.




	
dataset(instruments, fields, start_time=None, end_time=None, freq='day', disk_cache=1, inst_processors=[])

	Get feature dataset.


Note

Same interface as dataset method in dataset provider




Note

The server use redis_lock to make sure
read-write conflicts will not be triggered
but client readers are not considered.








	
update(cache_uri: Union[str, pathlib.Path], freq: str = 'day')

	Update dataset cache to latest calendar.

Override this method to define how to update dataset cache corresponding to users’ own cache mechanism.


	Parameters

	
	cache_uri (str or Path) – the complete uri of dataset cache file (include dir path).


	freq (str) – 






	Returns

	0(successful update)/ 1(no need to update)/ 2(update failure)



	Return type

	int










	
static cache_to_origin_data(data, fields)

	cache data to origin data


	Parameters

	
	data – pd.DataFrame, cache data.


	fields – feature fields.






	Returns

	pd.DataFrame.










	
static normalize_uri_args(instruments, fields, freq)

	normalize uri args










	
class qlib.data.cache.DiskExpressionCache(provider, **kwargs)

	Prepared cache mechanism for server.


	
__init__(provider, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.






	
gen_expression_cache(expression_data, cache_path, instrument, field, freq, last_update)

	use bin file to save like feature-data.






	
update(sid, cache_uri, freq: str = 'day')

	Update expression cache to latest calendar.

Override this method to define how to update expression cache corresponding to users’ own cache mechanism.


	Parameters

	
	cache_uri (str or Path) – the complete uri of expression cache file (include dir path).


	freq (str) – 






	Returns

	0(successful update)/ 1(no need to update)/ 2(update failure).



	Return type

	int














	
class qlib.data.cache.DiskDatasetCache(provider, **kwargs)

	Prepared cache mechanism for server.


	
__init__(provider, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.






	
classmethod read_data_from_cache(cache_path: Union[str, pathlib.Path], start_time, end_time, fields)

	read_cache_from

This function can read data from the disk cache dataset


	Parameters

	
	cache_path – 


	start_time – 


	end_time – 


	fields – The fields order of the dataset cache is sorted. So rearrange the columns to make it consistent.






	Returns

	










	
class IndexManager(cache_path: Union[str, pathlib.Path])

	The lock is not considered in the class. Please consider the lock outside the code.
This class is the proxy of the disk data.


	
__init__(cache_path: Union[str, pathlib.Path])

	Initialize self.  See help(type(self)) for accurate signature.










	
gen_dataset_cache(cache_path: Union[str, pathlib.Path], instruments, fields, freq, inst_processors=[])

	
Note

This function does not consider the cache read write lock. Please
acquire the lock outside this function



The format the cache contains 3 parts(followed by typical filename).


	index : cache/d41366901e25de3ec47297f12e2ba11d.index



	The content of the file may be in following format(pandas.Series)


                    start end
1999-11-10 00:00:00     0   1
1999-11-11 00:00:00     1   2
1999-11-12 00:00:00     2   3
...






Note

The start is closed. The end is open!!!!!








	Each line contains two element <start_index, end_index> with a timestamp as its index.


	It indicates the start_index (included) and end_index (excluded) of the data for timestamp









	meta data: cache/d41366901e25de3ec47297f12e2ba11d.meta


	data     : cache/d41366901e25de3ec47297f12e2ba11d



	This is a hdf file sorted by datetime












	Parameters

	
	cache_path – The path to store the cache.


	instruments – The instruments to store the cache.


	fields – The fields to store the cache.


	freq – The freq to store the cache.


	inst_processors – Instrument processors.








:return type pd.DataFrame; The fields of the returned DataFrame are consistent with the parameters of the function.






	
update(cache_uri, freq: str = 'day')

	Update dataset cache to latest calendar.

Override this method to define how to update dataset cache corresponding to users’ own cache mechanism.


	Parameters

	
	cache_uri (str or Path) – the complete uri of dataset cache file (include dir path).


	freq (str) – 






	Returns

	0(successful update)/ 1(no need to update)/ 2(update failure)



	Return type

	int















Storage


	
class qlib.data.storage.storage.BaseStorage

	




	
class qlib.data.storage.storage.CalendarStorage(freq: str, future: bool, **kwargs)

	The behavior of CalendarStorage’s methods and List’s methods of the same name remain consistent


	
__init__(freq: str, future: bool, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.






	
data

	get all data


	Raises

	ValueError – If the data(storage) does not exist, raise ValueError










	
index(value: str) → int

	
	Raises

	ValueError – If the data(storage) does not exist, raise ValueError














	
class qlib.data.storage.storage.InstrumentStorage(market: str, freq: str, **kwargs)

	
	
__init__(market: str, freq: str, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.






	
data

	get all data


	Raises

	ValueError – If the data(storage) does not exist, raise ValueError










	
update([E, ]**F) → None.  Update D from mapping/iterable E and F.

	Notes

If E present and has a .keys() method, does:     for k in E: D[k] = E[k]

If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v

In either case, this is followed by: for k, v in F.items(): D[k] = v










	
class qlib.data.storage.storage.FeatureStorage(instrument: str, field: str, freq: str, **kwargs)

	
	
__init__(instrument: str, field: str, freq: str, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.






	
data

	get all data

Notes

if data(storage) does not exist, return empty pd.Series: return pd.Series(dtype=np.float32)






	
start_index

	get FeatureStorage start index

Notes

If the data(storage) does not exist, return None






	
end_index

	get FeatureStorage end index

Notes

The  right index of the data range (both sides are closed)


The next  data appending point will be  end_index + 1




If the data(storage) does not exist, return None






	
write(data_array: Union[List[T], numpy.ndarray, Tuple], index: int = None)

	Write data_array to FeatureStorage starting from index.

Notes

If index is None, append data_array to feature.

If len(data_array) == 0; return

If (index - self.end_index) >= 1, self[end_index+1: index] will be filled with np.nan

Examples






	
rebase(start_index: int = None, end_index: int = None)

	Rebase the start_index and end_index of the FeatureStorage.

start_index and end_index are closed intervals: [start_index, end_index]

Examples






	
rewrite(data: Union[List[T], numpy.ndarray, Tuple], index: int)

	overwrite all data in FeatureStorage with data


	Parameters

	
	data (Union[List, np.ndarray, Tuple]) – data


	index (int) – data start index

















	
class qlib.data.storage.file_storage.FileStorageMixin

	FileStorageMixin, applicable to FileXXXStorage
Subclasses need to have provider_uri, freq, storage_name, file_name attributes


	
check()

	check self.uri


	Raises

	ValueError














	
class qlib.data.storage.file_storage.FileCalendarStorage(freq: str, future: bool, provider_uri: dict = None, **kwargs)

	
	
__init__(freq: str, future: bool, provider_uri: dict = None, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.






	
data

	get all data


	Raises

	ValueError – If the data(storage) does not exist, raise ValueError










	
index(value: str) → int

	
	Raises

	ValueError – If the data(storage) does not exist, raise ValueError














	
class qlib.data.storage.file_storage.FileInstrumentStorage(market: str, freq: str, provider_uri: dict = None, **kwargs)

	
	
__init__(market: str, freq: str, provider_uri: dict = None, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.






	
data

	get all data


	Raises

	ValueError – If the data(storage) does not exist, raise ValueError










	
update([E, ]**F) → None.  Update D from mapping/iterable E and F.

	Notes

If E present and has a .keys() method, does:     for k in E: D[k] = E[k]

If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v

In either case, this is followed by: for k, v in F.items(): D[k] = v










	
class qlib.data.storage.file_storage.FileFeatureStorage(instrument: str, field: str, freq: str, provider_uri: dict = None, **kwargs)

	
	
__init__(instrument: str, field: str, freq: str, provider_uri: dict = None, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.






	
data

	get all data

Notes

if data(storage) does not exist, return empty pd.Series: return pd.Series(dtype=np.float32)






	
write(data_array: Union[List[T], numpy.ndarray], index: int = None) → None

	Write data_array to FeatureStorage starting from index.

Notes

If index is None, append data_array to feature.

If len(data_array) == 0; return

If (index - self.end_index) >= 1, self[end_index+1: index] will be filled with np.nan

Examples






	
start_index

	get FeatureStorage start index

Notes

If the data(storage) does not exist, return None






	
end_index

	get FeatureStorage end index

Notes

The  right index of the data range (both sides are closed)


The next  data appending point will be  end_index + 1




If the data(storage) does not exist, return None











Dataset


Dataset Class


	
class qlib.data.dataset.__init__.Dataset(**kwargs)

	Preparing data for model training and inferencing.


	
__init__(**kwargs)

	init is designed to finish following steps:


	
	init the sub instance and the state of the dataset(info to prepare the data)

	
	The name of essential state for preparing data should not start with ‘_’ so that it could be serialized on disk when serializing.










	
	setup data

	
	The data related attributes’ names should start with ‘_’ so that it will not be saved on disk when serializing.












The data could specify the info to calculate the essential data for preparation






	
config(**kwargs)

	config is designed to configure and parameters that cannot be learned from the data






	
setup_data(**kwargs)

	Setup the data.

We split the setup_data function for following situation:


	User have a Dataset object with learned status on disk.


	User load the Dataset object from the disk.


	User call setup_data to load new data.


	User prepare data for model based on previous status.









	
prepare(**kwargs) → object

	The type of dataset depends on the model. (It could be pd.DataFrame, pytorch.DataLoader, etc.)
The parameters should specify the scope for the prepared data
The method should:
- process the data


	return the processed data





	Returns

	return the object



	Return type

	object














	
class qlib.data.dataset.__init__.DatasetH(handler: Union[Dict[KT, VT], qlib.data.dataset.handler.DataHandler], segments: Dict[str, Tuple], fetch_kwargs: Dict[KT, VT] = {}, **kwargs)

	Dataset with Data(H)andler

User should try to put the data preprocessing functions into handler.
Only following data processing functions should be placed in Dataset:


	The processing is related to specific model.


	The processing is related to data split.





	
__init__(handler: Union[Dict[KT, VT], qlib.data.dataset.handler.DataHandler], segments: Dict[str, Tuple], fetch_kwargs: Dict[KT, VT] = {}, **kwargs)

	Setup the underlying data.


	Parameters

	
	handler (Union[dict, DataHandler]) – handler could be:


	instance of DataHandler


	config of DataHandler.  Please refer to DataHandler







	segments (dict) – Describe the options to segment the data.
Here are some examples:













	
config(handler_kwargs: dict = None, **kwargs)

	Initialize the DatasetH


	Parameters

	
	handler_kwargs (dict) – Config of DataHandler, which could include the following arguments:


	arguments of DataHandler.conf_data, such as ‘instruments’, ‘start_time’ and ‘end_time’.







	kwargs (dict) – Config of DatasetH, such as


	
	segmentsdict

	Config of segments which is same as ‘segments’ in self.__init__























	
setup_data(handler_kwargs: dict = None, **kwargs)

	Setup the Data


	Parameters

	handler_kwargs (dict) – init arguments of DataHandler, which could include the following arguments:


	init_type : Init Type of Handler


	enable_cache : whether to enable cache















	
prepare(segments: Union[List[str], Tuple[str], str, slice, pandas.core.indexes.base.Index], col_set='__all', data_key='infer', **kwargs) → Union[List[pandas.core.frame.DataFrame], pandas.core.frame.DataFrame]

	Prepare the data for learning and inference.


	Parameters

	
	segments (Union[List[Text], Tuple[Text], Text, slice]) – Describe the scope of the data to be prepared
Here are some examples:


	’train’


	[‘train’, ‘valid’]







	col_set (str) – The col_set will be passed to self.handler when fetching data.
TODO: make it automatic:


	select DK_I for test data


	select DK_L for training data.







	data_key (str) – The data to fetch:  DK_*
Default is DK_I, which indicate fetching data for inference.


	kwargs – 
	The parameters that kwargs may contain:

	
	flt_colstr

	It only exists in TSDatasetH, can be used to add a column of data(True or False) to filter data.
This parameter is only supported when it is an instance of TSDatasetH.
















	Returns

	



	Return type

	Union[List[pd.DataFrame], pd.DataFrame]



	Raises

	NotImplementedError:















Data Loader


	
class qlib.data.dataset.loader.DataLoader

	DataLoader is designed for loading raw data from original data source.


	
load(instruments, start_time=None, end_time=None) → pandas.core.frame.DataFrame

	load the data as pd.DataFrame.

Example of the data (The multi-index of the columns is optional.):


                        feature                                                             label
                        $close     $volume     Ref($close, 1)  Mean($close, 3)  $high-$low  LABEL0
datetime    instrument
2010-01-04  SH600000    81.807068  17145150.0       83.737389        83.016739    2.741058  0.0032
            SH600004    13.313329  11800983.0       13.313329        13.317701    0.183632  0.0042
            SH600005    37.796539  12231662.0       38.258602        37.919757    0.970325  0.0289









	Parameters

	
	instruments (str or dict) – it can either be the market name or the config file of instruments generated by InstrumentProvider.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.






	Returns

	data load from the under layer source



	Return type

	pd.DataFrame














	
class qlib.data.dataset.loader.DLWParser(config: Union[list, tuple, dict])

	(D)ata(L)oader (W)ith (P)arser for features and names

Extracting this class so that QlibDataLoader and other dataloaders(such as QdbDataLoader) can share the fields.


	
__init__(config: Union[list, tuple, dict])

	
	Parameters

	config (Union[list, tuple, dict]) – Config will be used to describe the fields and column names










	
load_group_df(instruments, exprs: list, names: list, start_time: Union[str, pandas._libs.tslibs.timestamps.Timestamp] = None, end_time: Union[str, pandas._libs.tslibs.timestamps.Timestamp] = None, gp_name: str = None) → pandas.core.frame.DataFrame

	load the dataframe for specific group


	Parameters

	
	instruments – the instruments.


	exprs (list) – the expressions to describe the content of the data.


	names (list) – the name of the data.






	Returns

	the queried dataframe.



	Return type

	pd.DataFrame










	
load(instruments=None, start_time=None, end_time=None) → pandas.core.frame.DataFrame

	load the data as pd.DataFrame.

Example of the data (The multi-index of the columns is optional.):


                        feature                                                             label
                        $close     $volume     Ref($close, 1)  Mean($close, 3)  $high-$low  LABEL0
datetime    instrument
2010-01-04  SH600000    81.807068  17145150.0       83.737389        83.016739    2.741058  0.0032
            SH600004    13.313329  11800983.0       13.313329        13.317701    0.183632  0.0042
            SH600005    37.796539  12231662.0       38.258602        37.919757    0.970325  0.0289









	Parameters

	
	instruments (str or dict) – it can either be the market name or the config file of instruments generated by InstrumentProvider.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.






	Returns

	data load from the under layer source



	Return type

	pd.DataFrame














	
class qlib.data.dataset.loader.QlibDataLoader(config: Tuple[list, tuple, dict], filter_pipe: List[T] = None, swap_level: bool = True, freq: Union[str, dict] = 'day', inst_processors: Union[dict, list] = None)

	Same as QlibDataLoader. The fields can be define by config


	
__init__(config: Tuple[list, tuple, dict], filter_pipe: List[T] = None, swap_level: bool = True, freq: Union[str, dict] = 'day', inst_processors: Union[dict, list] = None)

	
	Parameters

	
	config (Tuple[list, tuple, dict]) – Please refer to the doc of DLWParser


	filter_pipe – Filter pipe for the instruments


	swap_level – Whether to swap level of MultiIndex


	freq (dict or str) – If type(config) == dict and type(freq) == str, load config data using freq.
If type(config) == dict and type(freq) == dict, load config[<group_name>] data using freq[<group_name>]


	inst_processors (dict | list) – If inst_processors is not None and type(config) == dict; load config[<group_name>] data using inst_processors[<group_name>]
If inst_processors is a list, then it will be applied to all groups.













	
load_group_df(instruments, exprs: list, names: list, start_time: Union[str, pandas._libs.tslibs.timestamps.Timestamp] = None, end_time: Union[str, pandas._libs.tslibs.timestamps.Timestamp] = None, gp_name: str = None) → pandas.core.frame.DataFrame

	load the dataframe for specific group


	Parameters

	
	instruments – the instruments.


	exprs (list) – the expressions to describe the content of the data.


	names (list) – the name of the data.






	Returns

	the queried dataframe.



	Return type

	pd.DataFrame














	
class qlib.data.dataset.loader.StaticDataLoader(config: Union[dict, str, pandas.core.frame.DataFrame], join='outer')

	DataLoader that supports loading data from file or as provided.


	
__init__(config: Union[dict, str, pandas.core.frame.DataFrame], join='outer')

	
	Parameters

	
	config (dict) – {fields_group: <path or object>}


	join (str) – How to align different dataframes













	
load(instruments=None, start_time=None, end_time=None) → pandas.core.frame.DataFrame

	load the data as pd.DataFrame.

Example of the data (The multi-index of the columns is optional.):


                        feature                                                             label
                        $close     $volume     Ref($close, 1)  Mean($close, 3)  $high-$low  LABEL0
datetime    instrument
2010-01-04  SH600000    81.807068  17145150.0       83.737389        83.016739    2.741058  0.0032
            SH600004    13.313329  11800983.0       13.313329        13.317701    0.183632  0.0042
            SH600005    37.796539  12231662.0       38.258602        37.919757    0.970325  0.0289









	Parameters

	
	instruments (str or dict) – it can either be the market name or the config file of instruments generated by InstrumentProvider.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.






	Returns

	data load from the under layer source



	Return type

	pd.DataFrame














	
class qlib.data.dataset.loader.DataLoaderDH(handler_config: dict, fetch_kwargs: dict = {}, is_group=False)

	DataLoader based on (D)ata (H)andler
It is designed to load multiple data from data handler
- If you just want to load data from single datahandler, you can write them in single data handler

TODO: What make this module not that easy to use.


	For online scenario



	The underlayer data handler should be configured. But data loader doesn’t provide such interface & hook.












	
__init__(handler_config: dict, fetch_kwargs: dict = {}, is_group=False)

	
	Parameters

	
	handler_config (dict) – handler_config will be used to describe the handlers


	fetch_kwargs (dict) – fetch_kwargs will be used to describe the different arguments of fetch method, such as col_set, squeeze, data_key, etc.


	is_group (bool) – is_group will be used to describe whether the key of handler_config is group













	
load(instruments=None, start_time=None, end_time=None) → pandas.core.frame.DataFrame

	load the data as pd.DataFrame.

Example of the data (The multi-index of the columns is optional.):


                        feature                                                             label
                        $close     $volume     Ref($close, 1)  Mean($close, 3)  $high-$low  LABEL0
datetime    instrument
2010-01-04  SH600000    81.807068  17145150.0       83.737389        83.016739    2.741058  0.0032
            SH600004    13.313329  11800983.0       13.313329        13.317701    0.183632  0.0042
            SH600005    37.796539  12231662.0       38.258602        37.919757    0.970325  0.0289









	Parameters

	
	instruments (str or dict) – it can either be the market name or the config file of instruments generated by InstrumentProvider.


	start_time (str) – start of the time range.


	end_time (str) – end of the time range.






	Returns

	data load from the under layer source



	Return type

	pd.DataFrame















Data Handler


	
class qlib.data.dataset.handler.DataHandler(instruments=None, start_time=None, end_time=None, data_loader: Union[dict, str, qlib.data.dataset.loader.DataLoader] = None, init_data=True, fetch_orig=True)

	The steps to using a handler
1. initialized data handler  (call by init).
2. use the data.

The data handler try to maintain a handler with 2 level.
datetime & instruments.

Any order of the index level can be supported (The order will be implied in the data).
The order  <datetime, instruments> will be used when the dataframe index name is missed.

Example of the data:
The multi-index of the columns is optional.

                        feature                                                            label
                        $close     $volume  Ref($close, 1)  Mean($close, 3)  $high-$low  LABEL0
datetime   instrument
2010-01-04 SH600000    81.807068  17145150.0       83.737389        83.016739    2.741058  0.0032
           SH600004    13.313329  11800983.0       13.313329        13.317701    0.183632  0.0042
           SH600005    37.796539  12231662.0       38.258602        37.919757    0.970325  0.0289





Tips for improving the performance of datahandler
- Fetching data with col_set=CS_RAW will return the raw data and may avoid pandas from copying the data when calling loc


	
__init__(instruments=None, start_time=None, end_time=None, data_loader: Union[dict, str, qlib.data.dataset.loader.DataLoader] = None, init_data=True, fetch_orig=True)

	
	Parameters

	
	instruments – The stock list to retrieve.


	start_time – start_time of the original data.


	end_time – end_time of the original data.


	data_loader (Union[dict, str, DataLoader]) – data loader to load the data.


	init_data – initialize the original data in the constructor.


	fetch_orig (bool) – Return the original data instead of copy if possible.













	
config(**kwargs)

	configuration of data.
# what data to be loaded from data source

This method will be used when loading pickled handler from dataset.
The data will be initialized with different time range.






	
setup_data(enable_cache: bool = False)

	Set Up the data in case of running initialization for multiple time

It is responsible for maintaining following variable
1) self._data


	Parameters

	enable_cache (bool) – default value is false:


	if enable_cache == True:


the processed data will be saved on disk, and handler will load the cached data from the disk directly
when we call init next time



















	
fetch(selector: Union[pandas._libs.tslibs.timestamps.Timestamp, slice, str, pandas.core.indexes.base.Index] = slice(None, None, None), level: Union[str, int] = 'datetime', col_set: Union[str, List[str]] = '__all', squeeze: bool = False, proc_func: Callable = None) → pandas.core.frame.DataFrame

	fetch data from underlying data source

Design motivation:
- providing a unified interface for underlying data.
- Potential to make the interface more friendly.
- User can improve performance when fetching data in this extra layer


	Parameters

	
	selector (Union[pd.Timestamp, slice, str]) – describe how to select data by index
It can be categories as following


	fetch single index


	fetch a range of index



	a slice range


	pd.Index for specific indexes











Following conflicts may occur


	Does [“20200101”, “20210101”] mean selecting this slice or these two days?



	slice have higher priorities














	level (Union[str, int]) – which index level to select the data


	col_set (Union[str, List[str]]) – 
	if isinstance(col_set, str):


select a set of meaningful, pd.Index columns.(e.g. features, columns)


	if col_set == CS_RAW:


the raw dataset will be returned.













	if isinstance(col_set, List[str]):


select several sets of meaningful columns, the returned data has multiple levels











	proc_func (Callable) – 
	Give a hook for processing data before fetching


	An example to explain the necessity of the hook:



	A Dataset learned some processors to process data which is related to data segmentation


	It will apply them every time when preparing data.


	The learned processor require the dataframe remains the same format when fitting and applying


	However the data format will change according to the parameters.


	So the processors should be applied to the underlayer data.














	squeeze (bool) – whether squeeze columns and index






	Returns

	



	Return type

	pd.DataFrame.










	
get_cols(col_set='__all') → list

	get the column names


	Parameters

	col_set (str) – select a set of meaningful columns.(e.g. features, columns)



	Returns

	list of column names



	Return type

	list










	
get_range_selector(cur_date: Union[pandas._libs.tslibs.timestamps.Timestamp, str], periods: int) → slice

	get range selector by number of periods


	Parameters

	
	cur_date (pd.Timestamp or str) – current date


	periods (int) – number of periods













	
get_range_iterator(periods: int, min_periods: Optional[int] = None, **kwargs) → Iterator[Tuple[pandas._libs.tslibs.timestamps.Timestamp, pandas.core.frame.DataFrame]]

	get an iterator of sliced data with given periods


	Parameters

	
	periods (int) – number of periods.


	min_periods (int) – minimum periods for sliced dataframe.


	kwargs (dict) – will be passed to self.fetch.

















	
class qlib.data.dataset.handler.DataHandlerLP(instruments=None, start_time=None, end_time=None, data_loader: Union[dict, str, qlib.data.dataset.loader.DataLoader] = None, infer_processors: List[T] = [], learn_processors: List[T] = [], shared_processors: List[T] = [], process_type='append', drop_raw=False, **kwargs)

	DataHandler with (L)earnable (P)rocessor

This handler will produce three pieces of data in pd.DataFrame format.


	DK_R / self._data: the raw data loaded from the loader


	DK_I / self._infer: the data processed for inference


	DK_L / self._learn: the data processed for learning model.




The motivation of using different processor workflows for learning and inference
Here are some examples.


	The instrument universe for learning and inference may be different.


	The processing of some samples may rely on label (for example, some samples hit the limit may need extra processing or be dropped).



	These processors only apply to the learning phase.











Tips for data handler


	To reduce the memory cost



	drop_raw=True: this will modify the data inplace on raw data;









	Please note processed data like self._infer or self._learn are concepts different from segments in Qlib’s Dataset like “train” and “test”



	Processed data like self._infer or self._learn are underlying data processed with different processors


	segments in Qlib’s Dataset like “train” and “test” are simply the time segmentations when querying data(“train” are often before “test” in time-series).


	For example, you can query data._infer processed by infer_processors in the “train” time segmentation.












	
__init__(instruments=None, start_time=None, end_time=None, data_loader: Union[dict, str, qlib.data.dataset.loader.DataLoader] = None, infer_processors: List[T] = [], learn_processors: List[T] = [], shared_processors: List[T] = [], process_type='append', drop_raw=False, **kwargs)

	
	Parameters

	
	infer_processors (list) – 
	list of <description info> of processors to generate data for inference


	example of <description info>:







	learn_processors (list) – similar to infer_processors, but for generating data for learning models


	process_type (str) – PTYPE_I = ‘independent’


	self._infer will be processed by infer_processors


	self._learn will be processed by learn_processors




PTYPE_A = ‘append’


	self._infer will be processed by infer_processors


	self._learn will be processed by infer_processors + learn_processors


	(e.g. self._infer processed by learn_processors )











	drop_raw (bool) – Whether to drop the raw data













	
fit()

	fit data without processing the data






	
fit_process_data()

	fit and process data

The input of the fit will be the output of the previous processor






	
process_data(with_fit: bool = False)

	process_data data. Fun processor.fit if necessary

Notation: (data)  [processor]

# data processing flow of self.process_type == DataHandlerLP.PTYPE_I

(self._data)-[shared_processors]-(_shared_df)-[learn_processors]-(_learn_df)
                                       \
                                        -[infer_processors]-(_infer_df)





# data processing flow of self.process_type == DataHandlerLP.PTYPE_A

(self._data)-[shared_processors]-(_shared_df)-[infer_processors]-(_infer_df)-[learn_processors]-(_learn_df)






	Parameters

	with_fit (bool) – The input of the fit will be the output of the previous processor










	
config(processor_kwargs: dict = None, **kwargs)

	configuration of data.
# what data to be loaded from data source

This method will be used when loading pickled handler from dataset.
The data will be initialized with different time range.






	
setup_data(init_type: str = 'fit_seq', **kwargs)

	Set up the data in case of running initialization for multiple time


	Parameters

	
	init_type (str) – The type IT_* listed above.


	enable_cache (bool) – default value is false:


	if enable_cache == True:


the processed data will be saved on disk, and handler will load the cached data from the disk directly
when we call init next time






















	
fetch(selector: Union[pandas._libs.tslibs.timestamps.Timestamp, slice, str] = slice(None, None, None), level: Union[str, int] = 'datetime', col_set='__all', data_key: typing_extensions.Literal['raw', 'infer', 'learn'][raw, infer, learn] = 'infer', squeeze: bool = False, proc_func: Callable = None) → pandas.core.frame.DataFrame

	fetch data from underlying data source


	Parameters

	
	selector (Union[pd.Timestamp, slice, str]) – describe how to select data by index.


	level (Union[str, int]) – which index level to select the data.


	col_set (str) – select a set of meaningful columns.(e.g. features, columns).


	data_key (str) – the data to fetch:  DK_*.


	proc_func (Callable) – please refer to the doc of DataHandler.fetch






	Returns

	



	Return type

	pd.DataFrame










	
get_cols(col_set='__all', data_key: typing_extensions.Literal['raw', 'infer', 'learn'][raw, infer, learn] = 'infer') → list

	get the column names


	Parameters

	
	col_set (str) – select a set of meaningful columns.(e.g. features, columns).


	data_key (DATA_KEY_TYPE) – the data to fetch:  DK_*.






	Returns

	list of column names



	Return type

	list










	
classmethod cast(handler: qlib.data.dataset.handler.DataHandlerLP) → qlib.data.dataset.handler.DataHandlerLP

	Motivation


	A user creates a datahandler in his customized package. Then he wants to share the processed handler to
other users without introduce the package dependency and complicated data processing logic.


	This class make it possible by casting the class to DataHandlerLP and only keep the processed data





	Parameters

	handler (DataHandlerLP) – A subclass of DataHandlerLP



	Returns

	the converted processed data



	Return type

	DataHandlerLP










	
classmethod from_df(df: pandas.core.frame.DataFrame) → qlib.data.dataset.handler.DataHandlerLP

	Motivation:
- When user want to get a quick data handler.

The created data handler will have only one shared Dataframe without processors.
After creating the handler, user may often want to dump the handler for reuse
Here is a typical use case

from qlib.data.dataset import DataHandlerLP
dh = DataHandlerLP.from_df(df)
dh.to_pickle(fname, dump_all=True)





TODO:
- The StaticDataLoader is quite slow. It don’t have to copy the data again…











Processor


	
qlib.data.dataset.processor.get_group_columns(df: pandas.core.frame.DataFrame, group: Optional[str])

	get a group of columns from multi-index columns DataFrame


	Parameters

	
	df (pd.DataFrame) – with multi of columns.


	group (str) – the name of the feature group, i.e. the first level value of the group index.













	
class qlib.data.dataset.processor.Processor

	
	
fit(df: pandas.core.frame.DataFrame = None)

	learn data processing parameters


	Parameters

	df (pd.DataFrame) – When we fit and process data with processor one by one. The fit function reiles on the output of previous
processor, i.e. df.










	
is_for_infer() → bool

	Is this processor usable for inference
Some processors are not usable for inference.


	Returns

	if it is usable for infenrece.



	Return type

	bool










	
readonly() → bool

	Does the processor treat the input data readonly (i.e. does not write the input data) when processing

Knowning the readonly information is helpful to the Handler to avoid uncessary copy






	
config(**kwargs)

	configure the serializable object


	Parameters

	
	may include following keys (kwargs) – 
	dump_allbool

	will the object dump all object



	excludelist

	What attribute will not be dumped



	includelist

	What attribute will be dumped








	recursive (bool) – will the configuration be recursive

















	
class qlib.data.dataset.processor.DropnaProcessor(fields_group=None)

	
	
__init__(fields_group=None)

	Initialize self.  See help(type(self)) for accurate signature.






	
readonly()

	Does the processor treat the input data readonly (i.e. does not write the input data) when processing

Knowning the readonly information is helpful to the Handler to avoid uncessary copy










	
class qlib.data.dataset.processor.DropnaLabel(fields_group='label')

	
	
__init__(fields_group='label')

	Initialize self.  See help(type(self)) for accurate signature.






	
is_for_infer() → bool

	The samples are dropped according to label. So it is not usable for inference










	
class qlib.data.dataset.processor.DropCol(col_list=[])

	
	
__init__(col_list=[])

	Initialize self.  See help(type(self)) for accurate signature.






	
readonly()

	Does the processor treat the input data readonly (i.e. does not write the input data) when processing

Knowning the readonly information is helpful to the Handler to avoid uncessary copy










	
class qlib.data.dataset.processor.FilterCol(fields_group='feature', col_list=[])

	
	
__init__(fields_group='feature', col_list=[])

	Initialize self.  See help(type(self)) for accurate signature.






	
readonly()

	Does the processor treat the input data readonly (i.e. does not write the input data) when processing

Knowning the readonly information is helpful to the Handler to avoid uncessary copy










	
class qlib.data.dataset.processor.TanhProcess

	Use tanh to process noise data






	
class qlib.data.dataset.processor.ProcessInf

	Process infinity






	
class qlib.data.dataset.processor.Fillna(fields_group=None, fill_value=0)

	Process NaN


	
__init__(fields_group=None, fill_value=0)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.dataset.processor.MinMaxNorm(fit_start_time, fit_end_time, fields_group=None)

	
	
__init__(fit_start_time, fit_end_time, fields_group=None)

	Initialize self.  See help(type(self)) for accurate signature.






	
fit(df: pandas.core.frame.DataFrame = None)

	learn data processing parameters


	Parameters

	df (pd.DataFrame) – When we fit and process data with processor one by one. The fit function reiles on the output of previous
processor, i.e. df.














	
class qlib.data.dataset.processor.ZScoreNorm(fit_start_time, fit_end_time, fields_group=None)

	ZScore Normalization


	
__init__(fit_start_time, fit_end_time, fields_group=None)

	Initialize self.  See help(type(self)) for accurate signature.






	
fit(df: pandas.core.frame.DataFrame = None)

	learn data processing parameters


	Parameters

	df (pd.DataFrame) – When we fit and process data with processor one by one. The fit function reiles on the output of previous
processor, i.e. df.














	
class qlib.data.dataset.processor.RobustZScoreNorm(fit_start_time, fit_end_time, fields_group=None, clip_outlier=True)

	Robust ZScore Normalization


	Use robust statistics for Z-Score normalization:

	mean(x) = median(x)
std(x) = MAD(x) * 1.4826



	Reference:

	https://en.wikipedia.org/wiki/Median_absolute_deviation.






	
__init__(fit_start_time, fit_end_time, fields_group=None, clip_outlier=True)

	Initialize self.  See help(type(self)) for accurate signature.






	
fit(df: pandas.core.frame.DataFrame = None)

	learn data processing parameters


	Parameters

	df (pd.DataFrame) – When we fit and process data with processor one by one. The fit function reiles on the output of previous
processor, i.e. df.














	
class qlib.data.dataset.processor.CSZScoreNorm(fields_group=None, method='zscore')

	Cross Sectional ZScore Normalization


	
__init__(fields_group=None, method='zscore')

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.dataset.processor.CSRankNorm(fields_group=None)

	Cross Sectional Rank Normalization.
“Cross Sectional” is often used to describe data operations.
The operations across different stocks are often called Cross Sectional Operation.

For example, CSRankNorm is an operation that grouping the data by each day and rank across all the stocks in each day.

Explanation about 3.46 & 0.5

import numpy as np
import pandas as pd
x = np.random.random(10000)  # for any variable
x_rank = pd.Series(x).rank(pct=True)  # if it is converted to rank, it will be a uniform distributed
x_rank_norm = (x_rank - x_rank.mean()) / x_rank.std()  # Normally, we will normalize it to make it like normal distribution

x_rank.mean()   # accounts for 0.5
1 / x_rank.std()  # accounts for 3.46






	
__init__(fields_group=None)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.dataset.processor.CSZFillna(fields_group=None)

	Cross Sectional Fill Nan


	
__init__(fields_group=None)

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.data.dataset.processor.HashStockFormat

	Process the storage of from df into hasing stock format






	
class qlib.data.dataset.processor.TimeRangeFlt(start_time: Union[pandas._libs.tslibs.timestamps.Timestamp, str, None] = None, end_time: Union[pandas._libs.tslibs.timestamps.Timestamp, str, None] = None, freq: str = 'day')

	This is a filter to filter stock.
Only keep the data that exist from start_time to end_time (the existence in the middle is not checked.)
WARNING:  It may induce leakage!!!


	
__init__(start_time: Union[pandas._libs.tslibs.timestamps.Timestamp, str, None] = None, end_time: Union[pandas._libs.tslibs.timestamps.Timestamp, str, None] = None, freq: str = 'day')

	
	Parameters

	
	start_time (Optional[Union[pd.Timestamp, str]]) – The data must start earlier (or equal) than start_time
None indicates data will not be filtered based on start_time


	end_time (Optional[Union[pd.Timestamp, str]]) – similar to start_time


	freq (str) – The frequency of the calendar




















Contrib


Model


	
class qlib.model.base.BaseModel

	Modeling things


	
predict(*args, **kwargs) → object

	Make predictions after modeling things










	
class qlib.model.base.Model

	Learnable Models


	
fit(dataset: qlib.data.dataset.Dataset, reweighter: qlib.data.dataset.weight.Reweighter)

	Learn model from the base model


Note

The attribute names of learned model should not start with ‘_’. So that the model could be
dumped to disk.



The following code example shows how to retrieve x_train, y_train and w_train from the dataset:


# get features and labels
df_train, df_valid = dataset.prepare(
    ["train", "valid"], col_set=["feature", "label"], data_key=DataHandlerLP.DK_L
)
x_train, y_train = df_train["feature"], df_train["label"]
x_valid, y_valid = df_valid["feature"], df_valid["label"]

# get weights
try:
    wdf_train, wdf_valid = dataset.prepare(["train", "valid"], col_set=["weight"],
                                           data_key=DataHandlerLP.DK_L)
    w_train, w_valid = wdf_train["weight"], wdf_valid["weight"]
except KeyError as e:
    w_train = pd.DataFrame(np.ones_like(y_train.values), index=y_train.index)
    w_valid = pd.DataFrame(np.ones_like(y_valid.values), index=y_valid.index)









	Parameters

	dataset (Dataset) – dataset will generate the processed data from model training.










	
predict(dataset: qlib.data.dataset.Dataset, segment: Union[str, slice] = 'test') → object

	give prediction given Dataset


	Parameters

	
	dataset (Dataset) – dataset will generate the processed dataset from model training.


	segment (Text or slice) – dataset will use this segment to prepare data. (default=test)






	Returns

	



	Return type

	Prediction results with certain type such as pandas.Series.














	
class qlib.model.base.ModelFT

	Model (F)ine(t)unable


	
finetune(dataset: qlib.data.dataset.Dataset)

	finetune model based given dataset

A typical use case of finetuning model with qlib.workflow.R

# start exp to train init model
with R.start(experiment_name="init models"):
    model.fit(dataset)
    R.save_objects(init_model=model)
    rid = R.get_recorder().id

# Finetune model based on previous trained model
with R.start(experiment_name="finetune model"):
    recorder = R.get_recorder(recorder_id=rid, experiment_name="init models")
    model = recorder.load_object("init_model")
    model.finetune(dataset, num_boost_round=10)






	Parameters

	dataset (Dataset) – dataset will generate the processed dataset from model training.















Strategy


	
class qlib.contrib.strategy.TopkDropoutStrategy(*, topk, n_drop, method_sell='bottom', method_buy='top', hold_thresh=1, only_tradable=False, forbid_all_trade_at_limit=True, **kwargs)

	
	
__init__(*, topk, n_drop, method_sell='bottom', method_buy='top', hold_thresh=1, only_tradable=False, forbid_all_trade_at_limit=True, **kwargs)

	
	Parameters

	
	topk (int) – the number of stocks in the portfolio.


	n_drop (int) – number of stocks to be replaced in each trading date.


	method_sell (str) – dropout method_sell, random/bottom.


	method_buy (str) – dropout method_buy, random/top.


	hold_thresh (int) – minimum holding days
before sell stock , will check current.get_stock_count(order.stock_id) >= self.hold_thresh.


	only_tradable (bool) – will the strategy only consider the tradable stock when buying and selling.

if only_tradable:


strategy will make decision with the tradable state of the stock info and avoid buy and sell them.




else:


strategy will make buy sell decision without checking the tradable state of the stock.







	forbid_all_trade_at_limit (bool) – if forbid all trades when limit_up or limit_down reached.

if forbid_all_trade_at_limit:


strategy will not do any trade when price reaches limit up/down, even not sell at limit up nor buy at
limit down, though allowed in reality.




else:


strategy will sell at limit up and buy ad limit down.


















	
generate_trade_decision(execute_result=None)

	Generate trade decision in each trading bar


	Parameters

	execute_result (List[object], optional) – the executed result for trade decision, by default None


	When call the generate_trade_decision firstly, execute_result could be None



















	
class qlib.contrib.strategy.WeightStrategyBase(*, order_generator_cls_or_obj=<class 'qlib.contrib.strategy.order_generator.OrderGenWOInteract'>, **kwargs)

	
	
__init__(*, order_generator_cls_or_obj=<class 'qlib.contrib.strategy.order_generator.OrderGenWOInteract'>, **kwargs)

	
	signal :

	the information to describe a signal. Please refer to the docs of qlib.backtest.signal.create_signal_from
the decision of the strategy will base on the given signal



	trade_exchangeExchange

	exchange that provides market info, used to deal order and generate report


	If trade_exchange is None, self.trade_exchange will be set with common_infra


	It allowes different trade_exchanges is used in different executions.


	For example:



	In daily execution, both daily exchange and minutely are usable, but the daily exchange is recommended because it runs faster.


	In minutely execution, the daily exchange is not usable, only the minutely exchange is recommended.




















	
generate_target_weight_position(score, current, trade_start_time, trade_end_time)

	Generate target position from score for this date and the current position.The cash is not considered in the position


	Parameters

	
	score (pd.Series) – pred score for this trade date, index is stock_id, contain ‘score’ column.


	current (Position()) – current position.


	trade_start_time (pd.Timestamp) – 


	trade_end_time (pd.Timestamp) – 













	
generate_trade_decision(execute_result=None)

	Generate trade decision in each trading bar


	Parameters

	execute_result (List[object], optional) – the executed result for trade decision, by default None


	When call the generate_trade_decision firstly, execute_result could be None



















	
class qlib.contrib.strategy.EnhancedIndexingStrategy(*, riskmodel_root, market='csi500', turn_limit=None, name_mapping={}, optimizer_kwargs={}, verbose=False, **kwargs)

	Enhanced Indexing Strategy

Enhanced indexing combines the arts of active management and passive management,
with the aim of outperforming a benchmark index (e.g., S&P 500) in terms of
portfolio return while controlling the risk exposure (a.k.a. tracking error).

Users need to prepare their risk model data like below:

├── /path/to/riskmodel
├──── 20210101
├────── factor_exp.{csv|pkl|h5}
├────── factor_cov.{csv|pkl|h5}
├────── specific_risk.{csv|pkl|h5}
├────── blacklist.{csv|pkl|h5}  # optional





The risk model data can be obtained from risk data provider. You can also use
qlib.model.riskmodel.structured.StructuredCovEstimator to prepare these data.


	Parameters

	
	riskmodel_path (str) – risk model path


	name_mapping (dict) – alternative file names









	
__init__(*, riskmodel_root, market='csi500', turn_limit=None, name_mapping={}, optimizer_kwargs={}, verbose=False, **kwargs)

	
	signal :

	the information to describe a signal. Please refer to the docs of qlib.backtest.signal.create_signal_from
the decision of the strategy will base on the given signal



	trade_exchangeExchange

	exchange that provides market info, used to deal order and generate report


	If trade_exchange is None, self.trade_exchange will be set with common_infra


	It allowes different trade_exchanges is used in different executions.


	For example:



	In daily execution, both daily exchange and minutely are usable, but the daily exchange is recommended because it runs faster.


	In minutely execution, the daily exchange is not usable, only the minutely exchange is recommended.




















	
generate_target_weight_position(score, current, trade_start_time, trade_end_time)

	Generate target position from score for this date and the current position.The cash is not considered in the position


	Parameters

	
	score (pd.Series) – pred score for this trade date, index is stock_id, contain ‘score’ column.


	current (Position()) – current position.


	trade_start_time (pd.Timestamp) – 


	trade_end_time (pd.Timestamp) – 

















	
class qlib.contrib.strategy.TWAPStrategy(outer_trade_decision: BaseTradeDecision = None, level_infra: LevelInfrastructure = None, common_infra: CommonInfrastructure = None, trade_exchange: Exchange = None)

	TWAP Strategy for trading


Note


	This TWAP strategy will celling round when trading. This will make the TWAP trading strategy produce the order
earlier when the total trade unit of amount is less than the trading step







	
reset(outer_trade_decision: qlib.backtest.decision.BaseTradeDecision = None, **kwargs)

	
	Parameters

	outer_trade_decision (BaseTradeDecision, optional) – 










	
generate_trade_decision(execute_result=None)

	Generate trade decision in each trading bar


	Parameters

	execute_result (List[object], optional) – the executed result for trade decision, by default None


	When call the generate_trade_decision firstly, execute_result could be None



















	
class qlib.contrib.strategy.SBBStrategyBase(outer_trade_decision: BaseTradeDecision = None, level_infra: LevelInfrastructure = None, common_infra: CommonInfrastructure = None, trade_exchange: Exchange = None)

	(S)elect the (B)etter one among every two adjacent trading (B)ars to sell or buy.


	
reset(outer_trade_decision: qlib.backtest.decision.BaseTradeDecision = None, **kwargs)

	
	Parameters

	outer_trade_decision (BaseTradeDecision, optional) – 










	
generate_trade_decision(execute_result=None)

	Generate trade decision in each trading bar


	Parameters

	execute_result (List[object], optional) – the executed result for trade decision, by default None


	When call the generate_trade_decision firstly, execute_result could be None



















	
class qlib.contrib.strategy.SBBStrategyEMA(outer_trade_decision: qlib.backtest.decision.BaseTradeDecision = None, instruments: Union[List[T], str] = 'csi300', freq: str = 'day', trade_exchange: qlib.backtest.exchange.Exchange = None, level_infra: qlib.backtest.utils.LevelInfrastructure = None, common_infra: qlib.backtest.utils.CommonInfrastructure = None, **kwargs)

	(S)elect the (B)etter one among every two adjacent trading (B)ars to sell or buy with (EMA) signal.


	
__init__(outer_trade_decision: qlib.backtest.decision.BaseTradeDecision = None, instruments: Union[List[T], str] = 'csi300', freq: str = 'day', trade_exchange: qlib.backtest.exchange.Exchange = None, level_infra: qlib.backtest.utils.LevelInfrastructure = None, common_infra: qlib.backtest.utils.CommonInfrastructure = None, **kwargs)

	
	Parameters

	
	instruments (Union[List, str], optional) – instruments of EMA signal, by default “csi300”


	freq (str, optional) – freq of EMA signal, by default “day”
Note: freq may be different from time_per_step













	
reset_level_infra(level_infra)

	reset level-shared infra
- After reset the trade calendar, the signal will be changed










	
class qlib.contrib.strategy.SoftTopkStrategy(model, dataset, topk, order_generator_cls_or_obj=<class 'qlib.contrib.strategy.order_generator.OrderGenWInteract'>, max_sold_weight=1.0, risk_degree=0.95, buy_method='first_fill', trade_exchange=None, level_infra=None, common_infra=None, **kwargs)

	
	
__init__(model, dataset, topk, order_generator_cls_or_obj=<class 'qlib.contrib.strategy.order_generator.OrderGenWInteract'>, max_sold_weight=1.0, risk_degree=0.95, buy_method='first_fill', trade_exchange=None, level_infra=None, common_infra=None, **kwargs)

	
	Parameters

	
	topk (int) – top-N stocks to buy


	risk_degree (float) – position percentage of total value buy_method:


rank_fill: assign the weight stocks that rank high first(1/topk max)
average_fill: assign the weight to the stocks rank high averagely.


















	
get_risk_degree(trade_step=None)

	Return the proportion of your total value you will used in investment.
Dynamically risk_degree will result in Market timing






	
generate_target_weight_position(score, current, trade_start_time, trade_end_time)

	
	Parameters

	
	score – pred score for this trade date, pd.Series, index is stock_id, contain ‘score’ column


	current – current position, use Position() class


	trade_date – trade date

generate target position from score for this date and the current position

The cache is not considered in the position




















Evaluate


	
qlib.contrib.evaluate.risk_analysis(r, N: int = None, freq: str = 'day')

	Risk Analysis
NOTE:
The calculation of annulaized return is different from the definition of annualized return.
It is implemented by design.
Qlib tries to cumulated returns by summation instead of production to avoid the cumulated curve being skewed exponentially.
All the calculation of annualized returns follows this principle in Qlib.

TODO: add a parameter to enable calculating metrics with production accumulation of return.


	Parameters

	
	r (pandas.Series) – daily return series.


	N (int) – scaler for annualizing information_ratio (day: 252, week: 50, month: 12), at least one of N and freq should exist


	freq (str) – analysis frequency used for calculating the scaler, at least one of N and freq should exist













	
qlib.contrib.evaluate.indicator_analysis(df, method='mean')

	analyze statistical time-series indicators of trading


	Parameters

	
	df (pandas.DataFrame) – 
	columns: like [‘pa’, ‘pos’, ‘ffr’, ‘deal_amount’, ‘value’].

	
	Necessary fields:

	
	’pa’ is the price advantage in trade indicators


	’pos’ is the positive rate in trade indicators


	’ffr’ is the fulfill rate in trade indicators






	Optional fields:

	
	’deal_amount’ is the total deal deal_amount, only necessary when method is ‘amount_weighted’


	’value’ is the total trade value, only necessary when method is ‘value_weighted’












index: Index(datetime)




	method (str, optional) – statistics method of pa/ffr, by default “mean”


	if method is ‘mean’, count the mean statistical value of each trade indicator


	if method is ‘amount_weighted’, count the deal_amount weighted mean statistical value of each trade indicator


	if method is ‘value_weighted’, count the value weighted mean statistical value of each trade indicator




Note: statistics method of pos is always “mean”








	Returns

	statistical value of each trade indicators



	Return type

	pd.DataFrame










	
qlib.contrib.evaluate.backtest_daily(start_time: Union[str, pandas._libs.tslibs.timestamps.Timestamp], end_time: Union[str, pandas._libs.tslibs.timestamps.Timestamp], strategy: Union[str, dict, qlib.strategy.base.BaseStrategy], executor: Union[str, dict, qlib.backtest.executor.BaseExecutor] = None, account: Union[float, int, qlib.backtest.position.Position] = 100000000.0, benchmark: str = 'SH000300', exchange_kwargs: dict = None, pos_type: str = 'Position')

	initialize the strategy and executor, then executor the backtest of daily frequency


	Parameters

	
	start_time (Union[str, pd.Timestamp]) – closed start time for backtest
NOTE: This will be applied to the outmost executor’s calendar.


	end_time (Union[str, pd.Timestamp]) – closed end time for backtest
NOTE: This will be applied to the outmost executor’s calendar.
E.g. Executor[day](Executor[1min]),   setting end_time == 20XX0301 will include all the minutes on 20XX0301


	strategy (Union[str, dict, BaseStrategy]) – for initializing outermost portfolio strategy. Please refer to the docs of init_instance_by_config for more information.

E.g.

# dict
strategy = {
    "class": "TopkDropoutStrategy",
    "module_path": "qlib.contrib.strategy.signal_strategy",
    "kwargs": {
        "signal": (model, dataset),
        "topk": 50,
        "n_drop": 5,
    },
}
# BaseStrategy
pred_score = pd.read_pickle("score.pkl")["score"]
STRATEGY_CONFIG = {
    "topk": 50,
    "n_drop": 5,
    "signal": pred_score,
}
strategy = TopkDropoutStrategy(**STRATEGY_CONFIG)
# str example.
# 1) specify a pickle object
#     - path like 'file:///<path to pickle file>/obj.pkl'
# 2) specify a class name
#     - "ClassName":  getattr(module, "ClassName")() will be used.
# 3) specify module path with class name
#     - "a.b.c.ClassName" getattr(<a.b.c.module>, "ClassName")() will be used.








	executor (Union[str, dict, BaseExecutor]) – for initializing the outermost executor.


	benchmark (str) – the benchmark for reporting.


	account (Union[float, int, Position]) – information for describing how to creating the account

For float or int:


Using Account with only initial cash




For Position:


Using Account with a Position







	exchange_kwargs (dict) – the kwargs for initializing Exchange
E.g.

exchange_kwargs = {
    "freq": freq,
    "limit_threshold": None, # limit_threshold is None, using C.limit_threshold
    "deal_price": None, # deal_price is None, using C.deal_price
    "open_cost": 0.0005,
    "close_cost": 0.0015,
    "min_cost": 5,
}








	pos_type (str) – the type of Position.






	Returns

	
	report_normal (pd.DataFrame) – backtest report


	positions_normal (pd.DataFrame) – backtest positions















	
qlib.contrib.evaluate.long_short_backtest(pred, topk=50, deal_price=None, shift=1, open_cost=0, close_cost=0, trade_unit=None, limit_threshold=None, min_cost=5, subscribe_fields=[], extract_codes=False)

	A backtest for long-short strategy


	Parameters

	
	pred – The trading signal produced on day T.


	topk – The short topk securities and long topk securities.


	deal_price – The price to deal the trading.


	shift – Whether to shift prediction by one day.  The trading day will be T+1 if shift==1.


	open_cost – open transaction cost.


	close_cost – close transaction cost.


	trade_unit – 100 for China A.


	limit_threshold – limit move 0.1 (10%) for example, long and short with same limit.


	min_cost – min transaction cost.


	subscribe_fields – subscribe fields.


	extract_codes – bool.
will we pass the codes extracted from the pred to the exchange.
NOTE: This will be faster with offline qlib.






	Returns

	The result of backtest, it is represented by a dict.
{ “long”: long_returns(excess),
“short”: short_returns(excess),
“long_short”: long_short_returns}











Report


	
qlib.contrib.report.analysis_position.report.report_graph(report_df: pandas.core.frame.DataFrame, show_notebook: bool = True) → [<class 'list'>, <class 'tuple'>]

	display backtest report


Example:


import qlib
import pandas as pd
from qlib.utils.time import Freq
from qlib.utils import flatten_dict
from qlib.backtest import backtest, executor
from qlib.contrib.evaluate import risk_analysis
from qlib.contrib.strategy import TopkDropoutStrategy

# init qlib
qlib.init(provider_uri=<qlib data dir>)

CSI300_BENCH = "SH000300"
FREQ = "day"
STRATEGY_CONFIG = {
    "topk": 50,
    "n_drop": 5,
    # pred_score, pd.Series
    "signal": pred_score,
}

EXECUTOR_CONFIG = {
    "time_per_step": "day",
    "generate_portfolio_metrics": True,
}

backtest_config = {
    "start_time": "2017-01-01",
    "end_time": "2020-08-01",
    "account": 100000000,
    "benchmark": CSI300_BENCH,
    "exchange_kwargs": {
        "freq": FREQ,
        "limit_threshold": 0.095,
        "deal_price": "close",
        "open_cost": 0.0005,
        "close_cost": 0.0015,
        "min_cost": 5,
    },
}

# strategy object
strategy_obj = TopkDropoutStrategy(**STRATEGY_CONFIG)
# executor object
executor_obj = executor.SimulatorExecutor(**EXECUTOR_CONFIG)
# backtest
portfolio_metric_dict, indicator_dict = backtest(executor=executor_obj, strategy=strategy_obj, **backtest_config)
analysis_freq = "{0}{1}".format(*Freq.parse(FREQ))
# backtest info
report_normal_df, positions_normal = portfolio_metric_dict.get(analysis_freq)

qcr.analysis_position.report_graph(report_normal_df)












	Parameters

	
	report_df – df.index.name must be date, df.columns must contain return, turnover, cost, bench.

            return      cost        bench       turnover
date
2017-01-04  0.003421    0.000864    0.011693    0.576325
2017-01-05  0.000508    0.000447    0.000721    0.227882
2017-01-06  -0.003321   0.000212    -0.004322   0.102765
2017-01-09  0.006753    0.000212    0.006874    0.105864
2017-01-10  -0.000416   0.000440    -0.003350   0.208396








	show_notebook – whether to display graphics in notebook, the default is True.






	Returns

	if show_notebook is True, display in notebook; else return plotly.graph_objs.Figure list.










	
qlib.contrib.report.analysis_position.score_ic.score_ic_graph(pred_label: pandas.core.frame.DataFrame, show_notebook: bool = True, **kwargs) → [<class 'list'>, <class 'tuple'>]

	score IC


Example:


from qlib.data import D
from qlib.contrib.report import analysis_position
pred_df_dates = pred_df.index.get_level_values(level='datetime')
features_df = D.features(D.instruments('csi500'), ['Ref($close, -2)/Ref($close, -1)-1'], pred_df_dates.min(), pred_df_dates.max())
features_df.columns = ['label']
pred_label = pd.concat([features_df, pred], axis=1, sort=True).reindex(features_df.index)
analysis_position.score_ic_graph(pred_label)












	Parameters

	
	pred_label – index is pd.MultiIndex, index name is [instrument, datetime]; columns names is [score, label].

instrument  datetime        score         label
SH600004  2017-12-11     -0.013502       -0.013502
            2017-12-12   -0.072367       -0.072367
            2017-12-13   -0.068605       -0.068605
            2017-12-14    0.012440        0.012440
            2017-12-15   -0.102778       -0.102778








	show_notebook – whether to display graphics in notebook, the default is True.






	Returns

	if show_notebook is True, display in notebook; else return plotly.graph_objs.Figure list.










	
qlib.contrib.report.analysis_position.cumulative_return.cumulative_return_graph(position: dict, report_normal: pandas.core.frame.DataFrame, label_data: pandas.core.frame.DataFrame, show_notebook=True, start_date=None, end_date=None) → Iterable[plotly.graph_objs._figure.Figure]

	Backtest buy, sell, and holding cumulative return graph


Example:


from qlib.data import D
from qlib.contrib.evaluate import risk_analysis, backtest, long_short_backtest
from qlib.contrib.strategy import TopkDropoutStrategy

# backtest parameters
bparas = {}
bparas['limit_threshold'] = 0.095
bparas['account'] = 1000000000

sparas = {}
sparas['topk'] = 50
sparas['n_drop'] = 5
strategy = TopkDropoutStrategy(**sparas)

report_normal_df, positions = backtest(pred_df, strategy, **bparas)

pred_df_dates = pred_df.index.get_level_values(level='datetime')
features_df = D.features(D.instruments('csi500'), ['Ref($close, -1)/$close - 1'], pred_df_dates.min(), pred_df_dates.max())
features_df.columns = ['label']

qcr.analysis_position.cumulative_return_graph(positions, report_normal_df, features_df)








Graph desc:



	Axis X: Trading day.


	Axis Y:


	Above axis Y: (((Ref($close, -1)/$close - 1) * weight).sum() / weight.sum()).cumsum().


	Below axis Y: Daily weight sum.


	In the sell graph, y < 0 stands for profit; in other cases, y > 0 stands for profit.


	In the buy_minus_sell graph, the y value of the weight graph at the bottom is buy_weight + sell_weight.


	In each graph, the red line in the histogram on the right represents the average.











	Parameters

	
	position – position data


	report_normal –                 return      cost        bench       turnover
date
2017-01-04  0.003421    0.000864    0.011693    0.576325
2017-01-05  0.000508    0.000447    0.000721    0.227882
2017-01-06  -0.003321   0.000212    -0.004322   0.102765
2017-01-09  0.006753    0.000212    0.006874    0.105864
2017-01-10  -0.000416   0.000440    -0.003350   0.208396








	label_data – D.features result; index is pd.MultiIndex, index name is [instrument, datetime]; columns names is [label].

The label T is the change from T to T+1, it is recommended to use close, example: D.features(D.instruments(‘csi500’), [‘Ref($close, -1)/$close-1’])


                                label
instrument  datetime
SH600004        2017-12-11  -0.013502
                2017-12-12  -0.072367
                2017-12-13  -0.068605
                2017-12-14  0.012440
                2017-12-15  -0.102778











	show_notebook – True or False. If True, show graph in notebook, else return figures


	start_date – start date


	end_date – end date






	Returns

	










	
qlib.contrib.report.analysis_position.risk_analysis.risk_analysis_graph(analysis_df: pandas.core.frame.DataFrame = None, report_normal_df: pandas.core.frame.DataFrame = None, report_long_short_df: pandas.core.frame.DataFrame = None, show_notebook: bool = True) → Iterable[plotly.graph_objs._figure.Figure]

	Generate analysis graph and monthly analysis


Example:


import qlib
import pandas as pd
from qlib.utils.time import Freq
from qlib.utils import flatten_dict
from qlib.backtest import backtest, executor
from qlib.contrib.evaluate import risk_analysis
from qlib.contrib.strategy import TopkDropoutStrategy

# init qlib
qlib.init(provider_uri=<qlib data dir>)

CSI300_BENCH = "SH000300"
FREQ = "day"
STRATEGY_CONFIG = {
    "topk": 50,
    "n_drop": 5,
    # pred_score, pd.Series
    "signal": pred_score,
}

EXECUTOR_CONFIG = {
    "time_per_step": "day",
    "generate_portfolio_metrics": True,
}

backtest_config = {
    "start_time": "2017-01-01",
    "end_time": "2020-08-01",
    "account": 100000000,
    "benchmark": CSI300_BENCH,
    "exchange_kwargs": {
        "freq": FREQ,
        "limit_threshold": 0.095,
        "deal_price": "close",
        "open_cost": 0.0005,
        "close_cost": 0.0015,
        "min_cost": 5,
    },
}

# strategy object
strategy_obj = TopkDropoutStrategy(**STRATEGY_CONFIG)
# executor object
executor_obj = executor.SimulatorExecutor(**EXECUTOR_CONFIG)
# backtest
portfolio_metric_dict, indicator_dict = backtest(executor=executor_obj, strategy=strategy_obj, **backtest_config)
analysis_freq = "{0}{1}".format(*Freq.parse(FREQ))
# backtest info
report_normal_df, positions_normal = portfolio_metric_dict.get(analysis_freq)
analysis = dict()
analysis["excess_return_without_cost"] = risk_analysis(
    report_normal_df["return"] - report_normal_df["bench"], freq=analysis_freq
)
analysis["excess_return_with_cost"] = risk_analysis(
    report_normal_df["return"] - report_normal_df["bench"] - report_normal_df["cost"], freq=analysis_freq
)

analysis_df = pd.concat(analysis)  # type: pd.DataFrame
analysis_position.risk_analysis_graph(analysis_df, report_normal_df)












	Parameters

	
	analysis_df – analysis data, index is pd.MultiIndex; columns names is [risk].

                                                  risk
excess_return_without_cost mean               0.000692
                           std                0.005374
                           annualized_return  0.174495
                           information_ratio  2.045576
                           max_drawdown      -0.079103
excess_return_with_cost    mean               0.000499
                           std                0.005372
                           annualized_return  0.125625
                           information_ratio  1.473152
                           max_drawdown      -0.088263








	report_normal_df – df.index.name must be date, df.columns must contain return, turnover, cost, bench.

            return      cost        bench       turnover
date
2017-01-04  0.003421    0.000864    0.011693    0.576325
2017-01-05  0.000508    0.000447    0.000721    0.227882
2017-01-06  -0.003321   0.000212    -0.004322   0.102765
2017-01-09  0.006753    0.000212    0.006874    0.105864
2017-01-10  -0.000416   0.000440    -0.003350   0.208396








	report_long_short_df – df.index.name must be date, df.columns contain long, short, long_short.

            long        short       long_short
date
2017-01-04  -0.001360   0.001394    0.000034
2017-01-05  0.002456    0.000058    0.002514
2017-01-06  0.000120    0.002739    0.002859
2017-01-09  0.001436    0.001838    0.003273
2017-01-10  0.000824    -0.001944   -0.001120








	show_notebook – Whether to display graphics in a notebook, default True.
If True, show graph in notebook
If False, return graph figure






	Returns

	










	
qlib.contrib.report.analysis_position.rank_label.rank_label_graph(position: dict, label_data: pandas.core.frame.DataFrame, start_date=None, end_date=None, show_notebook=True) → Iterable[plotly.graph_objs._figure.Figure]

	Ranking percentage of stocks buy, sell, and holding on the trading day.
Average rank-ratio(similar to sell_df[‘label’].rank(ascending=False) / len(sell_df)) of daily trading


Example:


from qlib.data import D
from qlib.contrib.evaluate import backtest
from qlib.contrib.strategy import TopkDropoutStrategy

# backtest parameters
bparas = {}
bparas['limit_threshold'] = 0.095
bparas['account'] = 1000000000

sparas = {}
sparas['topk'] = 50
sparas['n_drop'] = 230
strategy = TopkDropoutStrategy(**sparas)

_, positions = backtest(pred_df, strategy, **bparas)

pred_df_dates = pred_df.index.get_level_values(level='datetime')
features_df = D.features(D.instruments('csi500'), ['Ref($close, -1)/$close-1'], pred_df_dates.min(), pred_df_dates.max())
features_df.columns = ['label']

qcr.analysis_position.rank_label_graph(positions, features_df, pred_df_dates.min(), pred_df_dates.max())












	Parameters

	
	position – position data; qlib.backtest.backtest result.


	label_data – D.features result; index is pd.MultiIndex, index name is [instrument, datetime]; columns names is [label].

The label T is the change from T to T+1, it is recommended to use close, example: D.features(D.instruments(‘csi500’), [‘Ref($close, -1)/$close-1’]).


                                label
instrument  datetime
SH600004        2017-12-11  -0.013502
                2017-12-12  -0.072367
                2017-12-13  -0.068605
                2017-12-14  0.012440
                2017-12-15  -0.102778











	start_date – start date


	end_date – end_date


	show_notebook – True or False. If True, show graph in notebook, else return figures.






	Returns

	










	
qlib.contrib.report.analysis_model.analysis_model_performance.ic_figure(ic_df: pandas.core.frame.DataFrame, show_nature_day=True, **kwargs) → plotly.graph_objs._figure.Figure

	IC figure


	Parameters

	
	ic_df – ic DataFrame


	show_nature_day – whether to display the abscissa of non-trading day


	**kwargs – contains some parameters to control plot style in plotly. Currently, supports
- rangebreaks: https://plotly.com/python/time-series/#Hiding-Weekends-and-Holidays






	Returns

	plotly.graph_objs.Figure










	
qlib.contrib.report.analysis_model.analysis_model_performance.model_performance_graph(pred_label: pandas.core.frame.DataFrame, lag: int = 1, N: int = 5, reverse=False, rank=False, graph_names: list = ['group_return', 'pred_ic', 'pred_autocorr'], show_notebook: bool = True, show_nature_day: bool = False, **kwargs) → [<class 'list'>, <class 'tuple'>]

	Model performance


	Parameters

	
	pred_label – index is pd.MultiIndex, index name is [instrument, datetime]; columns names is [score, label].
It is usually same as the label of model training(e.g. “Ref($close, -2)/Ref($close, -1) - 1”).


instrument  datetime        score       label
SH600004    2017-12-11  -0.013502       -0.013502
                2017-12-12  -0.072367       -0.072367
                2017-12-13  -0.068605       -0.068605
                2017-12-14  0.012440        0.012440
                2017-12-15  -0.102778       -0.102778











	lag – pred.groupby(level=’instrument’)[‘score’].shift(lag). It will be only used in the auto-correlation computing.


	N – group number, default 5.


	reverse – if True, pred[‘score’] *= -1.


	rank – if True, calculate rank ic.


	graph_names – graph names; default [‘cumulative_return’, ‘pred_ic’, ‘pred_autocorr’, ‘pred_turnover’].


	show_notebook – whether to display graphics in notebook, the default is True.


	show_nature_day – whether to display the abscissa of non-trading day.


	**kwargs – contains some parameters to control plot style in plotly. Currently, supports
- rangebreaks: https://plotly.com/python/time-series/#Hiding-Weekends-and-Holidays






	Returns

	if show_notebook is True, display in notebook; else return plotly.graph_objs.Figure list.












Workflow


Experiment Manager


	
class qlib.workflow.expm.ExpManager(uri: str, default_exp_name: Optional[str])

	This is the ExpManager class for managing experiments. The API is designed similar to mlflow.
(The link: https://mlflow.org/docs/latest/python_api/mlflow.html)

The ExpManager is expected to be a singleton (btw, we can have multiple Experiment`s with different uri. user can get different experiments from different uri, and then compare records of them). Global Config (i.e. `C)  is also a singleton.

So we try to align them together.  They share the same variable, which is called default uri. Please refer to ExpManager.default_uri for details of variable sharing.

When the user starts an experiment, the user may want to set the uri to a specific uri (it will override default uri during this period), and then unset the specific uri and fallback to the default uri.    ExpManager._active_exp_uri is that specific uri.


	
__init__(uri: str, default_exp_name: Optional[str])

	Initialize self.  See help(type(self)) for accurate signature.






	
start_exp(*, experiment_id: Optional[str] = None, experiment_name: Optional[str] = None, recorder_id: Optional[str] = None, recorder_name: Optional[str] = None, uri: Optional[str] = None, resume: bool = False, **kwargs) → qlib.workflow.exp.Experiment

	Start an experiment. This method includes first get_or_create an experiment, and then
set it to be active.

Maintaining _active_exp_uri is included in start_exp, remaining implementation should be included in _end_exp in subclass


	Parameters

	
	experiment_id (str) – id of the active experiment.


	experiment_name (str) – name of the active experiment.


	recorder_id (str) – id of the recorder to be started.


	recorder_name (str) – name of the recorder to be started.


	uri (str) – the current tracking URI.


	resume (boolean) – whether to resume the experiment and recorder.






	Returns

	



	Return type

	An active experiment.










	
end_exp(recorder_status: str = 'SCHEDULED', **kwargs)

	End an active experiment.

Maintaining _active_exp_uri is included in end_exp, remaining implementation should be included in _end_exp in subclass


	Parameters

	
	experiment_name (str) – name of the active experiment.


	recorder_status (str) – the status of the active recorder of the experiment.













	
create_exp(experiment_name: Optional[str] = None)

	Create an experiment.


	Parameters

	experiment_name (str) – the experiment name, which must be unique.



	Returns

	
	An experiment object.


	Raise


	—–


	ExpAlreadyExistError















	
search_records(experiment_ids=None, **kwargs)

	Get a pandas DataFrame of records that fit the search criteria of the experiment.
Inputs are the search criteria user want to apply.


	Returns

	
	A pandas.DataFrame of records, where each metric, parameter, and tag


	are expanded into their own columns named metrics., params.*, and tags.**


	respectively. For records that don’t have a particular metric, parameter, or tag, their


	value will be (NumPy) Nan, None, or None respectively.















	
get_exp(*, experiment_id=None, experiment_name=None, create: bool = True, start: bool = False)

	Retrieve an experiment. This method includes getting an active experiment, and get_or_create a specific experiment.

When user specify experiment id and name, the method will try to return the specific experiment.
When user does not provide recorder id or name, the method will try to return the current active experiment.
The create argument determines whether the method will automatically create a new experiment according
to user’s specification if the experiment hasn’t been created before.


	If create is True:



	If active experiment exists:



	no id or name specified, return the active experiment.


	if id or name is specified, return the specified experiment. If no such exp found, create a new experiment with given id or name. If start is set to be True, the experiment is set to be active.









	If active experiment not exists:



	no id or name specified, create a default experiment.


	if id or name is specified, return the specified experiment. If no such exp found, create a new experiment with given id or name. If start is set to be True, the experiment is set to be active.
















	Else If create is False:



	If active experiment exists:



	no id or name specified, return the active experiment.


	if id or name is specified, return the specified experiment. If no such exp found, raise Error.









	If active experiment not exists:



	no id or name specified. If the default experiment exists, return it, otherwise, raise Error.


	if id or name is specified, return the specified experiment. If no such exp found, raise Error.



















	Parameters

	
	experiment_id (str) – id of the experiment to return.


	experiment_name (str) – name of the experiment to return.


	create (boolean) – create the experiment it if hasn’t been created before.


	start (boolean) – start the new experiment if one is created.






	Returns

	



	Return type

	An experiment object.










	
delete_exp(experiment_id=None, experiment_name=None)

	Delete an experiment.


	Parameters

	
	experiment_id (str) – the experiment id.


	experiment_name (str) – the experiment name.













	
default_uri

	Get the default tracking URI from qlib.config.C






	
uri

	Get the default tracking URI or current URI.


	Returns

	



	Return type

	The tracking URI string.










	
list_experiments()

	List all the existing experiments.


	Returns

	



	Return type

	A dictionary (name -> experiment) of experiments information that being stored.















Experiment


	
class qlib.workflow.exp.Experiment(id, name)

	This is the Experiment class for each experiment being run. The API is designed similar to mlflow.
(The link: https://mlflow.org/docs/latest/python_api/mlflow.html)


	
__init__(id, name)

	Initialize self.  See help(type(self)) for accurate signature.






	
start(*, recorder_id=None, recorder_name=None, resume=False)

	Start the experiment and set it to be active. This method will also start a new recorder.


	Parameters

	
	recorder_id (str) – the id of the recorder to be created.


	recorder_name (str) – the name of the recorder to be created.


	resume (bool) – whether to resume the first recorder






	Returns

	



	Return type

	An active recorder.










	
end(recorder_status='SCHEDULED')

	End the experiment.


	Parameters

	recorder_status (str) – the status the recorder to be set with when ending (SCHEDULED, RUNNING, FINISHED, FAILED).










	
create_recorder(recorder_name=None)

	Create a recorder for each experiment.


	Parameters

	recorder_name (str) – the name of the recorder to be created.



	Returns

	



	Return type

	A recorder object.










	
search_records(**kwargs)

	Get a pandas DataFrame of records that fit the search criteria of the experiment.
Inputs are the search criteria user want to apply.


	Returns

	
	A pandas.DataFrame of records, where each metric, parameter, and tag


	are expanded into their own columns named metrics., params.*, and tags.**


	respectively. For records that don’t have a particular metric, parameter, or tag, their


	value will be (NumPy) Nan, None, or None respectively.















	
delete_recorder(recorder_id)

	Create a recorder for each experiment.


	Parameters

	recorder_id (str) – the id of the recorder to be deleted.










	
get_recorder(recorder_id=None, recorder_name=None, create: bool = True, start: bool = False) → qlib.workflow.recorder.Recorder

	Retrieve a Recorder for user. When user specify recorder id and name, the method will try to return the
specific recorder. When user does not provide recorder id or name, the method will try to return the current
active recorder. The create argument determines whether the method will automatically create a new recorder
according to user’s specification if the recorder hasn’t been created before.


	If create is True:



	If active recorder exists:



	no id or name specified, return the active recorder.


	if id or name is specified, return the specified recorder. If no such exp found, create a new recorder with given id or name. If start is set to be True, the recorder is set to be active.









	If active recorder not exists:



	no id or name specified, create a new recorder.


	if id or name is specified, return the specified experiment. If no such exp found, create a new recorder with given id or name. If start is set to be True, the recorder is set to be active.
















	Else If create is False:



	If active recorder exists:



	no id or name specified, return the active recorder.


	if id or name is specified, return the specified recorder. If no such exp found, raise Error.









	If active recorder not exists:



	no id or name specified, raise Error.


	if id or name is specified, return the specified recorder. If no such exp found, raise Error.



















	Parameters

	
	recorder_id (str) – the id of the recorder to be deleted.


	recorder_name (str) – the name of the recorder to be deleted.


	create (boolean) – create the recorder if it hasn’t been created before.


	start (boolean) – start the new recorder if one is created.






	Returns

	



	Return type

	A recorder object.










	
list_recorders(rtype: typing_extensions.Literal['dict', 'list'][dict, list] = 'dict', **flt_kwargs) → Union[List[qlib.workflow.recorder.Recorder], Dict[str, qlib.workflow.recorder.Recorder]]

	List all the existing recorders of this experiment. Please first get the experiment instance before calling this method.
If user want to use the method R.list_recorders(), please refer to the related API document in QlibRecorder.


	flt_kwargsdict

	filter recorders by conditions
e.g.  list_recorders(status=Recorder.STATUS_FI)






	Returns

	
	if rtype == “dict”:

	A dictionary (id -> recorder) of recorder information that being stored.



	elif rtype == “list”:

	A list of Recorder.









	Return type

	The return type depends on rtype















Recorder


	
class qlib.workflow.recorder.Recorder(experiment_id, name)

	This is the Recorder class for logging the experiments. The API is designed similar to mlflow.
(The link: https://mlflow.org/docs/latest/python_api/mlflow.html)

The status of the recorder can be SCHEDULED, RUNNING, FINISHED, FAILED.


	
__init__(experiment_id, name)

	Initialize self.  See help(type(self)) for accurate signature.






	
save_objects(local_path=None, artifact_path=None, **kwargs)

	Save objects such as prediction file or model checkpoints to the artifact URI. User
can save object through keywords arguments (name:value).

Please refer to the docs of qlib.workflow:R.save_objects


	Parameters

	
	local_path (str) – if provided, them save the file or directory to the artifact URI.


	artifact_path=None (str) – the relative path for the artifact to be stored in the URI.













	
load_object(name)

	Load objects such as prediction file or model checkpoints.


	Parameters

	name (str) – name of the file to be loaded.



	Returns

	



	Return type

	The saved object.










	
start_run()

	Start running or resuming the Recorder. The return value can be used as a context manager within a with block;
otherwise, you must call end_run() to terminate the current run. (See ActiveRun class in mlflow)


	Returns

	



	Return type

	An active running object (e.g. mlflow.ActiveRun object)










	
end_run()

	End an active Recorder.






	
log_params(**kwargs)

	Log a batch of params for the current run.


	Parameters

	arguments (keyword) – key, value pair to be logged as parameters.










	
log_metrics(step=None, **kwargs)

	Log multiple metrics for the current run.


	Parameters

	arguments (keyword) – key, value pair to be logged as metrics.










	
log_artifact(local_path: str, artifact_path: Optional[str] = None)

	Log a local file or directory as an artifact of the currently active run.


	Parameters

	
	local_path (str) – Path to the file to write.


	artifact_path (Optional[str]) – If provided, the directory in artifact_uri to write to.













	
set_tags(**kwargs)

	Log a batch of tags for the current run.


	Parameters

	arguments (keyword) – key, value pair to be logged as tags.










	
delete_tags(*keys)

	Delete some tags from a run.


	Parameters

	keys (series of strs of the keys) – all the name of the tag to be deleted.










	
list_artifacts(artifact_path: str = None)

	List all the artifacts of a recorder.


	Parameters

	artifact_path (str) – the relative path for the artifact to be stored in the URI.



	Returns

	



	Return type

	A list of artifacts information (name, path, etc.) that being stored.










	
download_artifact(path: str, dst_path: Optional[str] = None) → str

	Download an artifact file or directory from a run to a local directory if applicable,
and return a local path for it.


	Parameters

	
	path (str) – Relative source path to the desired artifact.


	dst_path (Optional[str]) – Absolute path of the local filesystem destination directory to which to
download the specified artifacts. This directory must already exist.
If unspecified, the artifacts will either be downloaded to a new
uniquely-named directory on the local filesystem.






	Returns

	Local path of desired artifact.



	Return type

	str










	
list_metrics()

	List all the metrics of a recorder.


	Returns

	



	Return type

	A dictionary of metrics that being stored.










	
list_params()

	List all the params of a recorder.


	Returns

	



	Return type

	A dictionary of params that being stored.










	
list_tags()

	List all the tags of a recorder.


	Returns

	



	Return type

	A dictionary of tags that being stored.















Record Template


	
class qlib.workflow.record_temp.RecordTemp(recorder)

	This is the Records Template class that enables user to generate experiment results such as IC and
backtest in a certain format.


	
save(**kwargs)

	It behaves the same as self.recorder.save_objects.
But it is an easier interface because users don’t have to care about get_path and artifact_path






	
__init__(recorder)

	Initialize self.  See help(type(self)) for accurate signature.






	
generate(**kwargs)

	Generate certain records such as IC, backtest etc., and save them.


	Parameters

	kwargs – 










	
load(name: str, parents: bool = True)

	It behaves the same as self.recorder.load_object.
But it is an easier interface because users don’t have to care about get_path and artifact_path


	Parameters

	
	name (str) – the name for the file to be load.


	parents (bool) – Each recorder has different artifact_path.
So parents recursively find the path in parents
Sub classes has higher priority






	Returns

	



	Return type

	The stored records.










	
list()

	List the supported artifacts.
Users don’t have to consider self.get_path


	Returns

	



	Return type

	A list of all the supported artifacts.










	
check(include_self: bool = False, parents: bool = True)

	Check if the records is properly generated and saved.
It is useful in following examples


	checking if the dependant files complete before generating new things.


	checking if the final files is completed





	Parameters

	
	include_self (bool) – is the file generated by self included


	parents (bool) – will we check parents


	Raise – 


	------ – 


	FileNotFoundError – whether the records are stored properly.

















	
class qlib.workflow.record_temp.SignalRecord(model=None, dataset=None, recorder=None)

	This is the Signal Record class that generates the signal prediction. This class inherits the RecordTemp class.


	
__init__(model=None, dataset=None, recorder=None)

	Initialize self.  See help(type(self)) for accurate signature.






	
generate(**kwargs)

	Generate certain records such as IC, backtest etc., and save them.


	Parameters

	kwargs – 










	
list()

	List the supported artifacts.
Users don’t have to consider self.get_path


	Returns

	



	Return type

	A list of all the supported artifacts.














	
class qlib.workflow.record_temp.ACRecordTemp(recorder, skip_existing=False)

	Automatically checking record template


	
__init__(recorder, skip_existing=False)

	Initialize self.  See help(type(self)) for accurate signature.






	
generate(*args, **kwargs)

	automatically checking the files and then run the concrete generating task










	
class qlib.workflow.record_temp.HFSignalRecord(recorder, **kwargs)

	This is the Signal Analysis Record class that generates the analysis results such as IC and IR. This class inherits the RecordTemp class.


	
depend_cls

	alias of SignalRecord






	
__init__(recorder, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.






	
generate()

	Generate certain records such as IC, backtest etc., and save them.


	Parameters

	kwargs – 










	
list()

	List the supported artifacts.
Users don’t have to consider self.get_path


	Returns

	



	Return type

	A list of all the supported artifacts.














	
class qlib.workflow.record_temp.SigAnaRecord(recorder, ana_long_short=False, ann_scaler=252, label_col=0, skip_existing=False)

	This is the Signal Analysis Record class that generates the analysis results such as IC and IR.
This class inherits the RecordTemp class.


	
depend_cls

	alias of SignalRecord






	
__init__(recorder, ana_long_short=False, ann_scaler=252, label_col=0, skip_existing=False)

	Initialize self.  See help(type(self)) for accurate signature.






	
list()

	List the supported artifacts.
Users don’t have to consider self.get_path


	Returns

	



	Return type

	A list of all the supported artifacts.














	
class qlib.workflow.record_temp.PortAnaRecord(recorder, config=None, risk_analysis_freq: Union[List[T], str] = None, indicator_analysis_freq: Union[List[T], str] = None, indicator_analysis_method=None, skip_existing=False, **kwargs)

	This is the Portfolio Analysis Record class that generates the analysis results such as those of backtest. This class inherits the RecordTemp class.

The following files will be stored in recorder


	report_normal.pkl & positions_normal.pkl:



	The return report and detailed positions of the backtest, returned by qlib/contrib/evaluate.py:backtest









	port_analysis.pkl : The risk analysis of your portfolio, returned by qlib/contrib/evaluate.py:risk_analysis





	
depend_cls

	alias of SignalRecord






	
__init__(recorder, config=None, risk_analysis_freq: Union[List[T], str] = None, indicator_analysis_freq: Union[List[T], str] = None, indicator_analysis_method=None, skip_existing=False, **kwargs)

	
	config[“strategy”]dict

	define the strategy class as well as the kwargs.



	config[“executor”]dict

	define the executor class as well as the kwargs.



	config[“backtest”]dict

	define the backtest kwargs.



	risk_analysis_freqstr|List[str]

	risk analysis freq of report



	indicator_analysis_freqstr|List[str]

	indicator analysis freq of report



	indicator_analysis_methodstr, optional, default by None

	the candidate values include ‘mean’, ‘amount_weighted’, ‘value_weighted’










	
list()

	List the supported artifacts.
Users don’t have to consider self.get_path


	Returns

	



	Return type

	A list of all the supported artifacts.
















Task Management


TaskGen

TaskGenerator module can generate many tasks based on TaskGen and some task templates.


	
qlib.workflow.task.gen.task_generator(tasks, generators) → list

	Use a list of TaskGen and a list of task templates to generate different tasks.

For examples:


There are 3 task templates a,b,c and 2 TaskGen A,B. A will generates 2 tasks from a template and B will generates 3 tasks from a template.
task_generator([a, b, c], [A, B]) will finally generate 3*2*3 = 18 tasks.





	Parameters

	
	tasks (List[dict] or dict) – a list of task templates or a single task


	generators (List[TaskGen] or TaskGen) – a list of TaskGen or a single TaskGen






	Returns

	a list of tasks



	Return type

	list










	
class qlib.workflow.task.gen.TaskGen

	The base class for generating different tasks

Example 1:


input: a specific task template and rolling steps

output: rolling version of the tasks




Example 2:


input: a specific task template and losses list

output: a set of tasks with different losses





	
generate(task: dict) → List[dict]

	Generate different tasks based on a task template


	Parameters

	task (dict) – a task template



	Returns

	A list of tasks



	Return type

	typing.List[dict]














	
qlib.workflow.task.gen.handler_mod(task: dict, rolling_gen)

	Help to modify the handler end time when using RollingGen
It try to handle the following case


	Hander’s data end_time is earlier than  dataset’s test_data’s segments.



	To handle this, handler’s data’s end_time is extended.











If the handler’s end_time is None, then it is not necessary to change it’s end time.


	Parameters

	
	task (dict) – a task template


	rg (RollingGen) – an instance of RollingGen













	
qlib.workflow.task.gen.trunc_segments(ta: qlib.workflow.task.utils.TimeAdjuster, segments: Dict[str, pandas._libs.tslibs.timestamps.Timestamp], days, test_key='test')

	To avoid the leakage of future information, the segments should be truncated according to the test start_time


Note

This function will change segments inplace








	
class qlib.workflow.task.gen.RollingGen(step: int = 40, rtype: str = 'expanding', ds_extra_mod_func: Union[None, Callable] = <function handler_mod>, test_key='test', train_key='train', trunc_days: int = None, task_copy_func: Callable = <function deepcopy>)

	
	
__init__(step: int = 40, rtype: str = 'expanding', ds_extra_mod_func: Union[None, Callable] = <function handler_mod>, test_key='test', train_key='train', trunc_days: int = None, task_copy_func: Callable = <function deepcopy>)

	Generate tasks for rolling


	Parameters

	
	step (int) – step to rolling


	rtype (str) – rolling type (expanding, sliding)


	ds_extra_mod_func (Callable) – A method like: handler_mod(task: dict, rg: RollingGen)
Do some extra action after generating a task. For example, use handler_mod to modify the end time of the handler of a dataset.


	trunc_days (int) – trunc some data to avoid future information leakage


	task_copy_func (Callable) – the function to copy entire task. This is very useful when user want to share something between tasks













	
gen_following_tasks(task: dict, test_end: pandas._libs.tslibs.timestamps.Timestamp) → List[dict]

	generating following rolling tasks for task until test_end


	Parameters

	
	task (dict) – Qlib task format


	test_end (pd.Timestamp) – the latest rolling task includes test_end






	Returns

	the following tasks of task`(`task itself is excluded)



	Return type

	List[dict]










	
generate(task: dict) → List[dict]

	Converting the task into a rolling task.


	Parameters

	task (dict) – A dict describing a task. For example.

DEFAULT_TASK = {
    "model": {
        "class": "LGBModel",
        "module_path": "qlib.contrib.model.gbdt",
    },
    "dataset": {
        "class": "DatasetH",
        "module_path": "qlib.data.dataset",
        "kwargs": {
            "handler": {
                "class": "Alpha158",
                "module_path": "qlib.contrib.data.handler",
                "kwargs": {
                    "start_time": "2008-01-01",
                    "end_time": "2020-08-01",
                    "fit_start_time": "2008-01-01",
                    "fit_end_time": "2014-12-31",
                    "instruments": "csi100",
                },
            },
            "segments": {
                "train": ("2008-01-01", "2014-12-31"),
                "valid": ("2015-01-01", "2016-12-20"),  # Please avoid leaking the future test data into validation
                "test": ("2017-01-01", "2020-08-01"),
            },
        },
    },
    "record": [
        {
            "class": "SignalRecord",
            "module_path": "qlib.workflow.record_temp",
        },
    ]
}









	Returns

	List[dict]



	Return type

	a list of tasks














	
class qlib.workflow.task.gen.MultiHorizonGenBase(horizon: List[int] = [5], label_leak_n=2)

	
	
__init__(horizon: List[int] = [5], label_leak_n=2)

	This task generator tries to generate tasks for different horizons based on an existing task


	Parameters

	
	horizon (List[int]) – the possible horizons of the tasks


	label_leak_n (int) – How many future days it will take to get complete label after the day making prediction
For example:
- User make prediction on day T`(after getting the close price on `T)
- The label is the return of buying stock on T + 1 and selling it on T + 2
- the label_leak_n will be 2 (e.g. two days of information is leaked to leverage this sample)













	
set_horizon(task: dict, hr: int)

	This method is designed to change the task in place


	Parameters

	
	task (dict) – Qlib’s task


	hr (int) – the horizon of task













	
generate(task: dict)

	Generate different tasks based on a task template


	Parameters

	task (dict) – a task template



	Returns

	A list of tasks



	Return type

	typing.List[dict]















TaskManager

TaskManager can fetch unused tasks automatically and manage the lifecycle of a set of tasks with error handling.
These features can run tasks concurrently and ensure every task will be used only once.
Task Manager will store all tasks in MongoDB [https://www.mongodb.com/].
Users MUST finished the configuration of MongoDB [https://www.mongodb.com/] when using this module.

A task in TaskManager consists of 3 parts
- tasks description: the desc will define the task
- tasks status: the status of the task
- tasks result: A user can get the task with the task description and task result.


	
class qlib.workflow.task.manage.TaskManager(task_pool: str)

	Here is what will a task looks like when it created by TaskManager

{
    'def': pickle serialized task definition.  using pickle will make it easier
    'filter': json-like data. This is for filtering the tasks.
    'status': 'waiting' | 'running' | 'done'
    'res': pickle serialized task result,
}





The tasks manager assumes that you will only update the tasks you fetched.
The mongo fetch one and update will make it date updating secure.

This class can be used as a tool from commandline. Here are several examples.
You can view the help of manage module with the following commands:
python -m qlib.workflow.task.manage -h # show manual of manage module CLI
python -m qlib.workflow.task.manage wait -h # show manual of the wait command of manage

python -m qlib.workflow.task.manage -t <pool_name> wait
python -m qlib.workflow.task.manage -t <pool_name> task_stat






Note

Assumption: the data in MongoDB was encoded and the data out of MongoDB was decoded



Here are four status which are:


STATUS_WAITING: waiting for training

STATUS_RUNNING: training

STATUS_PART_DONE: finished some step and waiting for next step

STATUS_DONE: all work done





	
__init__(task_pool: str)

	Init Task Manager, remember to make the statement of MongoDB url and database name firstly.
A TaskManager instance serves a specific task pool.
The static method of this module serves the whole MongoDB.


	Parameters

	task_pool (str) – the name of Collection in MongoDB










	
static list() → list

	List the all collection(task_pool) of the db.


	Returns

	list










	
replace_task(task, new_task)

	Use a new task to replace a old one


	Parameters

	
	task – old task


	new_task – new task













	
insert_task(task)

	Insert a task.


	Parameters

	task – the task waiting for insert



	Returns

	pymongo.results.InsertOneResult










	
insert_task_def(task_def)

	Insert a task to task_pool


	Parameters

	task_def (dict) – the task definition



	Returns

	



	Return type

	pymongo.results.InsertOneResult










	
create_task(task_def_l, dry_run=False, print_nt=False) → List[str]

	If the tasks in task_def_l are new, then insert new tasks into the task_pool, and record inserted_id.
If a task is not new, then just query its _id.


	Parameters

	
	task_def_l (list) – a list of task


	dry_run (bool) – if insert those new tasks to task pool


	print_nt (bool) – if print new task






	Returns

	a list of the _id of task_def_l



	Return type

	List[str]










	
fetch_task(query={}, status='waiting') → dict

	Use query to fetch tasks.


	Parameters

	
	query (dict, optional) – query dict. Defaults to {}.


	status (str, optional) – [description]. Defaults to STATUS_WAITING.






	Returns

	a task(document in collection) after decoding



	Return type

	dict










	
safe_fetch_task(query={}, status='waiting')

	Fetch task from task_pool using query with contextmanager


	Parameters

	query (dict) – the dict of query



	Returns

	dict



	Return type

	a task(document in collection) after decoding










	
query(query={}, decode=True)

	Query task in collection.
This function may raise exception pymongo.errors.CursorNotFound: cursor id not found if it takes too long to iterate the generator

python -m qlib.workflow.task.manage -t <your task pool> query ‘{“_id”: “615498be837d0053acbc5d58”}’


	Parameters

	
	query (dict) – the dict of query


	decode (bool) – 






	Returns

	dict



	Return type

	a task(document in collection) after decoding










	
re_query(_id) → dict

	Use _id to query task.


	Parameters

	_id (str) – _id of a document



	Returns

	a task(document in collection) after decoding



	Return type

	dict










	
commit_task_res(task, res, status='done')

	Commit the result to task[‘res’].


	Parameters

	
	task ([type]) – [description]


	res (object) – the result you want to save


	status (str, optional) – STATUS_WAITING, STATUS_RUNNING, STATUS_DONE, STATUS_PART_DONE. Defaults to STATUS_DONE.













	
return_task(task, status='waiting')

	Return a task to status. Always using in error handling.


	Parameters

	
	task ([type]) – [description]


	status (str, optional) – STATUS_WAITING, STATUS_RUNNING, STATUS_DONE, STATUS_PART_DONE. Defaults to STATUS_WAITING.













	
remove(query={})

	Remove the task using query


	Parameters

	query (dict) – the dict of query










	
task_stat(query={}) → dict

	Count the tasks in every status.


	Parameters

	query (dict, optional) – the query dict. Defaults to {}.



	Returns

	dict










	
reset_waiting(query={})

	Reset all running task into waiting status. Can be used when some running task exit unexpected.


	Parameters

	query (dict, optional) – the query dict. Defaults to {}.










	
prioritize(task, priority: int)

	Set priority for task


	Parameters

	
	task (dict) – The task query from the database


	priority (int) – the target priority













	
wait(query={})

	When multiprocessing, the main progress may fetch nothing from TaskManager because there are still some running tasks.
So main progress should wait until all tasks are trained well by other progress or machines.


	Parameters

	query (dict, optional) – the query dict. Defaults to {}.














	
qlib.workflow.task.manage.run_task(task_func: Callable, task_pool: str, query: dict = {}, force_release: bool = False, before_status: str = 'waiting', after_status: str = 'done', **kwargs)

	While the task pool is not empty (has WAITING tasks), use task_func to fetch and run tasks in task_pool

After running this method, here are 4 situations (before_status -> after_status):


STATUS_WAITING -> STATUS_DONE: use task[“def”] as task_func param, it means that the task has not been started

STATUS_WAITING -> STATUS_PART_DONE: use task[“def”] as task_func param

STATUS_PART_DONE -> STATUS_PART_DONE: use task[“res”] as task_func param, it means that the task has been started but not completed

STATUS_PART_DONE -> STATUS_DONE: use task[“res”] as task_func param





	Parameters

	
	task_func (Callable) – def (task_def, **kwargs) -> <res which will be committed>

the function to run the task




	task_pool (str) – the name of the task pool (Collection in MongoDB)


	query (dict) – will use this dict to query task_pool when fetching task


	force_release (bool) – will the program force to release the resource


	before_status (str:) – the tasks in before_status will be fetched and trained. Can be STATUS_WAITING, STATUS_PART_DONE.


	after_status (str:) – the tasks after trained will become after_status. Can be STATUS_WAITING, STATUS_PART_DONE.


	kwargs – the params for task_func














Trainer

The Trainer will train a list of tasks and return a list of model recorders.
There are two steps in each Trainer including train (make model recorder) and end_train (modify model recorder).

This is a concept called DelayTrainer, which can be used in online simulating for parallel training.
In DelayTrainer, the first step is only to save some necessary info to model recorders, and the second step which will be finished in the end can do some concurrent and time-consuming operations such as model fitting.

Qlib offer two kinds of Trainer, TrainerR is the simplest way and TrainerRM is based on TaskManager to help manager tasks lifecycle automatically.


	
qlib.model.trainer.begin_task_train(task_config: dict, experiment_name: str, recorder_name: str = None) → qlib.workflow.recorder.Recorder

	Begin task training to start a recorder and save the task config.


	Parameters

	
	task_config (dict) – the config of a task


	experiment_name (str) – the name of experiment


	recorder_name (str) – the given name will be the recorder name. None for using rid.






	Returns

	the model recorder



	Return type

	Recorder










	
qlib.model.trainer.end_task_train(rec: qlib.workflow.recorder.Recorder, experiment_name: str) → qlib.workflow.recorder.Recorder

	Finish task training with real model fitting and saving.


	Parameters

	
	rec (Recorder) – the recorder will be resumed


	experiment_name (str) – the name of experiment






	Returns

	the model recorder



	Return type

	Recorder










	
qlib.model.trainer.task_train(task_config: dict, experiment_name: str, recorder_name: str = None) → qlib.workflow.recorder.Recorder

	Task based training, will be divided into two steps.


	Parameters

	
	task_config (dict) – The config of a task.


	experiment_name (str) – The name of experiment


	recorder_name (str) – The name of recorder






	Returns

	Recorder



	Return type

	The instance of the recorder










	
class qlib.model.trainer.Trainer

	The trainer can train a list of models.
There are Trainer and DelayTrainer, which can be distinguished by when it will finish real training.


	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.






	
train(tasks: list, *args, **kwargs) → list

	Given a list of task definitions, begin training, and return the models.

For Trainer, it finishes real training in this method.
For DelayTrainer, it only does some preparation in this method.


	Parameters

	tasks – a list of tasks



	Returns

	a list of models



	Return type

	list










	
end_train(models: list, *args, **kwargs) → list

	Given a list of models, finished something at the end of training if you need.
The models may be Recorder, txt file, database, and so on.

For Trainer, it does some finishing touches in this method.
For DelayTrainer, it finishes real training in this method.


	Parameters

	models – a list of models



	Returns

	a list of models



	Return type

	list










	
is_delay() → bool

	If Trainer will delay finishing end_train.


	Returns

	if DelayTrainer



	Return type

	bool










	
has_worker() → bool

	Some trainer has backend worker to support parallel training
This method can tell if the worker is enabled.


	Returns

	if the worker is enabled



	Return type

	bool










	
worker()

	start the worker


	Raises

	NotImplementedError: – If the worker is not supported














	
class qlib.model.trainer.TrainerR(experiment_name: Optional[str] = None, train_func: Callable = <function task_train>, call_in_subproc: bool = False, default_rec_name: Optional[str] = None)

	Trainer based on (R)ecorder.
It will train a list of tasks and return a list of model recorders in a linear way.

Assumption: models were defined by task and the results will be saved to Recorder.


	
__init__(experiment_name: Optional[str] = None, train_func: Callable = <function task_train>, call_in_subproc: bool = False, default_rec_name: Optional[str] = None)

	Init TrainerR.


	Parameters

	
	experiment_name (str, optional) – the default name of experiment.


	train_func (Callable, optional) – default training method. Defaults to task_train.


	call_in_subproc (bool) – call the process in subprocess to force memory release













	
train(tasks: list, train_func: Callable = None, experiment_name: str = None, **kwargs) → List[qlib.workflow.recorder.Recorder]

	Given a list of tasks and return a list of trained Recorder. The order can be guaranteed.


	Parameters

	
	tasks (list) – a list of definitions based on task dict


	train_func (Callable) – the training method which needs at least tasks and experiment_name. None for the default training method.


	experiment_name (str) – the experiment name, None for use default name.


	kwargs – the params for train_func.






	Returns

	a list of Recorders



	Return type

	List[Recorder]










	
end_train(models: list, **kwargs) → List[qlib.workflow.recorder.Recorder]

	Set STATUS_END tag to the recorders.


	Parameters

	models (list) – a list of trained recorders.



	Returns

	the same list as the param.



	Return type

	List[Recorder]














	
class qlib.model.trainer.DelayTrainerR(experiment_name: str = None, train_func=<function begin_task_train>, end_train_func=<function end_task_train>, **kwargs)

	A delayed implementation based on TrainerR, which means train method may only do some preparation and end_train method can do the real model fitting.


	
__init__(experiment_name: str = None, train_func=<function begin_task_train>, end_train_func=<function end_task_train>, **kwargs)

	Init TrainerRM.


	Parameters

	
	experiment_name (str) – the default name of experiment.


	train_func (Callable, optional) – default train method. Defaults to begin_task_train.


	end_train_func (Callable, optional) – default end_train method. Defaults to end_task_train.













	
end_train(models, end_train_func=None, experiment_name: str = None, **kwargs) → List[qlib.workflow.recorder.Recorder]

	Given a list of Recorder and return a list of trained Recorder.
This class will finish real data loading and model fitting.


	Parameters

	
	models (list) – a list of Recorder, the tasks have been saved to them


	end_train_func (Callable, optional) – the end_train method which needs at least recorders and experiment_name. Defaults to None for using self.end_train_func.


	experiment_name (str) – the experiment name, None for use default name.


	kwargs – the params for end_train_func.






	Returns

	a list of Recorders



	Return type

	List[Recorder]














	
class qlib.model.trainer.TrainerRM(experiment_name: str = None, task_pool: str = None, train_func=<function task_train>, skip_run_task: bool = False, default_rec_name: Optional[str] = None)

	Trainer based on (R)ecorder and Task(M)anager.
It can train a list of tasks and return a list of model recorders in a multiprocessing way.

Assumption: task will be saved to TaskManager and task will be fetched and trained from TaskManager


	
__init__(experiment_name: str = None, task_pool: str = None, train_func=<function task_train>, skip_run_task: bool = False, default_rec_name: Optional[str] = None)

	Init TrainerR.


	Parameters

	
	experiment_name (str) – the default name of experiment.


	task_pool (str) – task pool name in TaskManager. None for use same name as experiment_name.


	train_func (Callable, optional) – default training method. Defaults to task_train.


	skip_run_task (bool) – If skip_run_task == True:
Only run_task in the worker. Otherwise skip run_task.













	
train(tasks: list, train_func: Callable = None, experiment_name: str = None, before_status: str = 'waiting', after_status: str = 'done', default_rec_name: Optional[str] = None, **kwargs) → List[qlib.workflow.recorder.Recorder]

	Given a list of tasks and return a list of trained Recorder. The order can be guaranteed.

This method defaults to a single process, but TaskManager offered a great way to parallel training.
Users can customize their train_func to realize multiple processes or even multiple machines.


	Parameters

	
	tasks (list) – a list of definitions based on task dict


	train_func (Callable) – the training method which needs at least tasks and experiment_name. None for the default training method.


	experiment_name (str) – the experiment name, None for use default name.


	before_status (str) – the tasks in before_status will be fetched and trained. Can be STATUS_WAITING, STATUS_PART_DONE.


	after_status (str) – the tasks after trained will become after_status. Can be STATUS_WAITING, STATUS_PART_DONE.


	kwargs – the params for train_func.






	Returns

	a list of Recorders



	Return type

	List[Recorder]










	
end_train(recs: list, **kwargs) → List[qlib.workflow.recorder.Recorder]

	Set STATUS_END tag to the recorders.


	Parameters

	recs (list) – a list of trained recorders.



	Returns

	the same list as the param.



	Return type

	List[Recorder]










	
worker(train_func: Callable = None, experiment_name: str = None)

	The multiprocessing method for train. It can share a same task_pool with train and can run in other progress or other machines.


	Parameters

	
	train_func (Callable) – the training method which needs at least tasks and experiment_name. None for the default training method.


	experiment_name (str) – the experiment name, None for use default name.













	
has_worker() → bool

	Some trainer has backend worker to support parallel training
This method can tell if the worker is enabled.


	Returns

	if the worker is enabled



	Return type

	bool














	
class qlib.model.trainer.DelayTrainerRM(experiment_name: str = None, task_pool: str = None, train_func=<function begin_task_train>, end_train_func=<function end_task_train>, skip_run_task: bool = False, **kwargs)

	A delayed implementation based on TrainerRM, which means train method may only do some preparation and end_train method can do the real model fitting.


	
__init__(experiment_name: str = None, task_pool: str = None, train_func=<function begin_task_train>, end_train_func=<function end_task_train>, skip_run_task: bool = False, **kwargs)

	Init DelayTrainerRM.


	Parameters

	
	experiment_name (str) – the default name of experiment.


	task_pool (str) – task pool name in TaskManager. None for use same name as experiment_name.


	train_func (Callable, optional) – default train method. Defaults to begin_task_train.


	end_train_func (Callable, optional) – default end_train method. Defaults to end_task_train.


	skip_run_task (bool) – If skip_run_task == True:
Only run_task in the worker. Otherwise skip run_task.
E.g. Starting trainer on a CPU VM and then waiting tasks to be finished on GPU VMs.













	
train(tasks: list, train_func=None, experiment_name: str = None, **kwargs) → List[qlib.workflow.recorder.Recorder]

	Same as train of TrainerRM, after_status will be STATUS_PART_DONE.


	Parameters

	
	tasks (list) – a list of definition based on task dict


	train_func (Callable) – the train method which need at least tasks and experiment_name. Defaults to None for using self.train_func.


	experiment_name (str) – the experiment name, None for use default name.






	Returns

	a list of Recorders



	Return type

	List[Recorder]










	
end_train(recs, end_train_func=None, experiment_name: str = None, **kwargs) → List[qlib.workflow.recorder.Recorder]

	Given a list of Recorder and return a list of trained Recorder.
This class will finish real data loading and model fitting.


	Parameters

	
	recs (list) – a list of Recorder, the tasks have been saved to them.


	end_train_func (Callable, optional) – the end_train method which need at least recorders and experiment_name. Defaults to None for using self.end_train_func.


	experiment_name (str) – the experiment name, None for use default name.


	kwargs – the params for end_train_func.






	Returns

	a list of Recorders



	Return type

	List[Recorder]










	
worker(end_train_func=None, experiment_name: str = None)

	The multiprocessing method for end_train. It can share a same task_pool with end_train and can run in other progress or other machines.


	Parameters

	
	end_train_func (Callable, optional) – the end_train method which need at least recorders and experiment_name. Defaults to None for using self.end_train_func.


	experiment_name (str) – the experiment name, None for use default name.













	
has_worker() → bool

	Some trainer has backend worker to support parallel training
This method can tell if the worker is enabled.


	Returns

	if the worker is enabled



	Return type

	bool















Collector

Collector module can collect objects from everywhere and process them such as merging, grouping, averaging and so on.


	
class qlib.workflow.task.collect.Collector(process_list=[])

	The collector to collect different results


	
__init__(process_list=[])

	Init Collector.


	Parameters

	process_list (list or Callable) – the list of processors or the instance of a processor to process dict.










	
collect() → dict

	Collect the results and return a dict like {key: things}


	Returns

	the dict after collecting.

For example:

{“prediction”: pd.Series}

{“IC”: {“Xgboost”: pd.Series, “LSTM”: pd.Series}}

…





	Return type

	dict










	
static process_collect(collected_dict, process_list=[], *args, **kwargs) → dict

	Do a series of processing to the dict returned by collect and return a dict like {key: things}
For example, you can group and ensemble.


	Parameters

	
	collected_dict (dict) – the dict return by collect


	process_list (list or Callable) – the list of processors or the instance of a processor to process dict.
The processor order is the same as the list order.
For example: [Group1(…, Ensemble1()), Group2(…, Ensemble2())]






	Returns

	the dict after processing.



	Return type

	dict














	
class qlib.workflow.task.collect.MergeCollector(collector_dict: Dict[str, qlib.workflow.task.collect.Collector], process_list: List[Callable] = [], merge_func=None)

	A collector to collect the results of other Collectors

For example:


We have 2 collector, which named A and B.
A can collect {“prediction”: pd.Series} and B can collect {“IC”: {“Xgboost”: pd.Series, “LSTM”: pd.Series}}.
Then after this class’s collect, we can collect {“A_prediction”: pd.Series, “B_IC”: {“Xgboost”: pd.Series, “LSTM”: pd.Series}}

…





	
__init__(collector_dict: Dict[str, qlib.workflow.task.collect.Collector], process_list: List[Callable] = [], merge_func=None)

	Init MergeCollector.


	Parameters

	
	collector_dict (Dict[str,Collector]) – the dict like {collector_key, Collector}


	process_list (List[Callable]) – the list of processors or the instance of processor to process dict.


	merge_func (Callable) – a method to generate outermost key. The given params are collector_key from collector_dict and key from every collector after collecting.
None for using tuple to connect them, such as “ABC”+(“a”,”b”) -> (“ABC”, (“a”,”b”)).













	
collect() → dict

	Collect all results of collector_dict and change the outermost key to a recombination key.


	Returns

	the dict after collecting.



	Return type

	dict














	
class qlib.workflow.task.collect.RecorderCollector(experiment, process_list=[], rec_key_func=None, rec_filter_func=None, artifacts_path={'pred': 'pred.pkl'}, artifacts_key=None, list_kwargs={}, status: Iterable[T_co] = {'FINISHED'})

	
	
__init__(experiment, process_list=[], rec_key_func=None, rec_filter_func=None, artifacts_path={'pred': 'pred.pkl'}, artifacts_key=None, list_kwargs={}, status: Iterable[T_co] = {'FINISHED'})

	Init RecorderCollector.


	Parameters

	
	experiment – (Experiment or str): an instance of an Experiment or the name of an Experiment
(Callable): an callable function, which returns a list of experiments


	process_list (list or Callable) – the list of processors or the instance of a processor to process dict.


	rec_key_func (Callable) – a function to get the key of a recorder. If None, use recorder id.


	rec_filter_func (Callable, optional) – filter the recorder by return True or False. Defaults to None.


	artifacts_path (dict, optional) – The artifacts name and its path in Recorder. Defaults to {“pred”: “pred.pkl”, “IC”: “sig_analysis/ic.pkl”}.


	artifacts_key (str or List, optional) – the artifacts key you want to get. If None, get all artifacts.


	list_kwargs (str) – arguments for list_recorders function.


	status (Iterable) – only collect recorders with specific status. None indicating collecting all the recorders













	
collect(artifacts_key=None, rec_filter_func=None, only_exist=True) → dict

	Collect different artifacts based on recorder after filtering.


	Parameters

	
	artifacts_key (str or List, optional) – the artifacts key you want to get. If None, use the default.


	rec_filter_func (Callable, optional) – filter the recorder by return True or False. If None, use the default.


	only_exist (bool, optional) – if only collect the artifacts when a recorder really has.
If True, the recorder with exception when loading will not be collected. But if False, it will raise the exception.






	Returns

	the dict after collected like {artifact: {rec_key: object}}



	Return type

	dict










	
get_exp_name() → str

	Get experiment name


	Returns

	experiment name



	Return type

	str















Group

Group can group a set of objects based on group_func and change them to a dict.
After group, we provide a method to reduce them.

For example:

group: {(A,B,C1): object, (A,B,C2): object} -> {(A,B): {C1: object, C2: object}}
reduce: {(A,B): {C1: object, C2: object}} -> {(A,B): object}


	
class qlib.model.ens.group.Group(group_func=None, ens: qlib.model.ens.ensemble.Ensemble = None)

	Group the objects based on dict


	
__init__(group_func=None, ens: qlib.model.ens.ensemble.Ensemble = None)

	Init Group.


	Parameters

	
	group_func (Callable, optional) – Given a dict and return the group key and one of the group elements.

For example: {(A,B,C1): object, (A,B,C2): object} -> {(A,B): {C1: object, C2: object}}




	to None. (Defaults) – 


	ens (Ensemble, optional) – If not None, do ensemble for grouped value after grouping.













	
group(*args, **kwargs) → dict

	Group a set of objects and change them to a dict.

For example: {(A,B,C1): object, (A,B,C2): object} -> {(A,B): {C1: object, C2: object}}


	Returns

	grouped dict



	Return type

	dict










	
reduce(*args, **kwargs) → dict

	Reduce grouped dict.

For example: {(A,B): {C1: object, C2: object}} -> {(A,B): object}


	Returns

	reduced dict



	Return type

	dict














	
class qlib.model.ens.group.RollingGroup(ens=<qlib.model.ens.ensemble.RollingEnsemble object>)

	Group the rolling dict


	
group(rolling_dict: dict) → dict

	Given an rolling dict likes {(A,B,R): things}, return the grouped dict likes {(A,B): {R:things}}

NOTE: There is an assumption which is the rolling key is at the end of the key tuple, because the rolling results always need to be ensemble firstly.


	Parameters

	rolling_dict (dict) – an rolling dict. If the key is not a tuple, then do nothing.



	Returns

	grouped dict



	Return type

	dict










	
__init__(ens=<qlib.model.ens.ensemble.RollingEnsemble object>)

	Init Group.


	Parameters

	
	group_func (Callable, optional) – Given a dict and return the group key and one of the group elements.

For example: {(A,B,C1): object, (A,B,C2): object} -> {(A,B): {C1: object, C2: object}}




	to None. (Defaults) – 


	ens (Ensemble, optional) – If not None, do ensemble for grouped value after grouping.


















Ensemble

Ensemble module can merge the objects in an Ensemble. For example, if there are many submodels predictions, we may need to merge them into an ensemble prediction.


	
class qlib.model.ens.ensemble.Ensemble

	Merge the ensemble_dict into an ensemble object.

For example: {Rollinga_b: object, Rollingb_c: object} -> object

When calling this class:



	Args:

	ensemble_dict (dict): the ensemble dict like {name: things} waiting for merging



	Returns:

	object: the ensemble object













	
class qlib.model.ens.ensemble.SingleKeyEnsemble

	Extract the object if there is only one key and value in the dict. Make the result more readable.
{Only key: Only value} -> Only value

If there is more than 1 key or less than 1 key, then do nothing.
Even you can run this recursively to make dict more readable.

NOTE: Default runs recursively.

When calling this class:



	Args:

	ensemble_dict (dict): the dict. The key of the dict will be ignored.



	Returns:

	dict: the readable dict.













	
class qlib.model.ens.ensemble.RollingEnsemble

	Merge a dict of rolling dataframe like prediction or IC into an ensemble.

NOTE: The values of dict must be pd.DataFrame, and have the index “datetime”.

When calling this class:



	Args:

	ensemble_dict (dict): a dict like {“A”: pd.DataFrame, “B”: pd.DataFrame}.
The key of the dict will be ignored.



	Returns:

	pd.DataFrame: the complete result of rolling.













	
class qlib.model.ens.ensemble.AverageEnsemble

	Average and standardize a dict of same shape dataframe like prediction or IC into an ensemble.

NOTE: The values of dict must be pd.DataFrame, and have the index “datetime”. If it is a nested dict, then flat it.

When calling this class:



	Args:

	ensemble_dict (dict): a dict like {“A”: pd.DataFrame, “B”: pd.DataFrame}.
The key of the dict will be ignored.



	Returns:

	pd.DataFrame: the complete result of averaging and standardizing.














Utils

Some tools for task management.


	
qlib.workflow.task.utils.get_mongodb() → pymongo.database.Database

	Get database in MongoDB, which means you need to declare the address and the name of a database at first.

For example:


Using qlib.init():


mongo_conf = {
    "task_url": task_url,  # your MongoDB url
    "task_db_name": task_db_name,  # database name
}
qlib.init(..., mongo=mongo_conf)








After qlib.init():


C["mongo"] = {
    "task_url" : "mongodb://localhost:27017/",
    "task_db_name" : "rolling_db"
}












	Returns

	the Database instance



	Return type

	Database










	
qlib.workflow.task.utils.list_recorders(experiment, rec_filter_func=None)

	List all recorders which can pass the filter in an experiment.


	Parameters

	
	experiment (str or Experiment) – the name of an Experiment or an instance


	rec_filter_func (Callable, optional) – return True to retain the given recorder. Defaults to None.






	Returns

	a dict {rid: recorder} after filtering.



	Return type

	dict










	
class qlib.workflow.task.utils.TimeAdjuster(future=True, end_time=None)

	Find appropriate date and adjust date.


	
__init__(future=True, end_time=None)

	Initialize self.  See help(type(self)) for accurate signature.






	
set_end_time(end_time=None)

	Set end time. None for use calendar’s end time.


	Parameters

	end_time – 










	
get(idx: int)

	Get datetime by index.


	Parameters

	idx (int) – index of the calendar










	
max() → pandas._libs.tslibs.timestamps.Timestamp

	Return the max calendar datetime






	
align_idx(time_point, tp_type='start') → int

	Align the index of time_point in the calendar.


	Parameters

	
	time_point – 


	tp_type (str) – 






	Returns

	index



	Return type

	int










	
cal_interval(time_point_A, time_point_B) → int

	Calculate the trading day interval (time_point_A - time_point_B)


	Parameters

	
	time_point_A – time_point_A


	time_point_B – time_point_B (is the past of time_point_A)






	Returns

	the interval between A and B



	Return type

	int










	
align_time(time_point, tp_type='start') → pandas._libs.tslibs.timestamps.Timestamp

	Align time_point to trade date of calendar


	Parameters

	
	time_point – Time point


	tp_type – str
time point type (“start”, “end”)






	Returns

	pd.Timestamp










	
align_seg(segment: Union[dict, tuple]) → Union[dict, tuple]

	Align the given date to the trade date

for example:


input: {'train': ('2008-01-01', '2014-12-31'), 'valid': ('2015-01-01', '2016-12-31'), 'test': ('2017-01-01', '2020-08-01')}

output: {'train': (Timestamp('2008-01-02 00:00:00'), Timestamp('2014-12-31 00:00:00')),
        'valid': (Timestamp('2015-01-05 00:00:00'), Timestamp('2016-12-30 00:00:00')),
        'test': (Timestamp('2017-01-03 00:00:00'), Timestamp('2020-07-31 00:00:00'))}









	Parameters

	segment – 



	Returns

	Union[dict, tuple]



	Return type

	the start and end trade date (pd.Timestamp) between the given start and end date.










	
truncate(segment: tuple, test_start, days: int) → tuple

	Truncate the segment based on the test_start date


	Parameters

	
	segment (tuple) – time segment


	test_start – 


	days (int) – The trading days to be truncated
the data in this segment may need ‘days’ data
days are based on the test_start.
For example, if the label contains the information of 2 days in the near future, the prediction horizon 1 day.
(e.g. the prediction target is Ref($close, -2)/Ref($close, -1) - 1)
the days should be 2 + 1 == 3 days.






	Returns

	tuple



	Return type

	new segment










	
shift(seg: tuple, step: int, rtype='sliding') → tuple

	Shift the datatime of segment

If there are None (which indicates unbounded index) in the segment, this method will return None.


	Parameters

	
	seg – datetime segment


	step (int) – rolling step


	rtype (str) – rolling type (“sliding” or “expanding”)






	Returns

	tuple



	Return type

	new segment



	Raises

	KeyError: – shift will raise error if the index(both start and end) is out of self.cal














	
qlib.workflow.task.utils.replace_task_handler_with_cache(task: dict, cache_dir: Union[str, pathlib.Path] = '.') → dict

	Replace the handler in task with a cache handler.
It will automatically cache the file and save it in cache_dir.

>>> import qlib
>>> qlib.auto_init()
>>> import datetime
>>> # it is simplified task
>>> task = {"dataset": {"kwargs":{'handler': {'class': 'Alpha158', 'module_path': 'qlib.contrib.data.handler', 'kwargs': {'start_time': datetime.date(2008, 1, 1), 'end_time': datetime.date(2020, 8, 1), 'fit_start_time': datetime.date(2008, 1, 1), 'fit_end_time': datetime.date(2014, 12, 31), 'instruments': 'CSI300'}}}}}
>>> new_task = replace_task_handler_with_cache(task)
>>> print(new_task)
{'dataset': {'kwargs': {'handler': 'file...Alpha158.3584f5f8b4.pkl'}}}












Online Serving


Online Manager

OnlineManager can manage a set of Online Strategy and run them dynamically.

With the change of time, the decisive models will be also changed. In this module, we call those contributing models online models.
In every routine(such as every day or every minute), the online models may be changed and the prediction of them needs to be updated.
So this module provides a series of methods to control this process.

This module also provides a method to simulate Online Strategy in history.
Which means you can verify your strategy or find a better one.

There are 4 total situations for using different trainers in different situations:







	Situations

	Description





	Online + Trainer

	When you want to do a REAL routine, the Trainer will help you train the models. It
will train models task by task and strategy by strategy.



	Online + DelayTrainer

	DelayTrainer will skip concrete training until all tasks have been prepared by
different strategies. It makes users can parallelly train all tasks at the end of
routine or first_train. Otherwise, these functions will get stuck when each
strategy prepare tasks.



	Simulation + Trainer

	It will behave in the same way as Online + Trainer. The only difference is that it
is for simulation/backtesting instead of online trading



	Simulation + DelayTrainer

	When your models don’t have any temporal dependence, you can use DelayTrainer
for the ability to multitasking. It means all tasks in all routines
can be REAL trained at the end of simulating. The signals will be prepared well at
different time segments (based on whether or not any new model is online).






Here is some pseudo code that demonstrate the workflow of each situation


	For simplicity

	
	Only one strategy is used in the strategy


	update_online_pred is only called in the online mode and is ignored









	Online + Trainer




tasks = first_train()
models = trainer.train(tasks)
trainer.end_train(models)
for day in online_trading_days:
    # OnlineManager.routine
    models = trainer.train(strategy.prepare_tasks())  # for each strategy
    strategy.prepare_online_models(models)  # for each strategy

    trainer.end_train(models)
    prepare_signals()  # prepare trading signals daily





Online + DelayTrainer: the workflow is the same as Online + Trainer.


	Simulation + DelayTrainer




# simulate
tasks = first_train()
models = trainer.train(tasks)
for day in historical_calendars:
    # OnlineManager.routine
    models = trainer.train(strategy.prepare_tasks())  # for each strategy
    strategy.prepare_online_models(models)  # for each strategy
# delay_prepare()
# FIXME: Currently the delay_prepare is not implemented in a proper way.
trainer.end_train(<for all previous models>)
prepare_signals()





# Can we simplify current workflow?


	Can reduce the number of state of tasks?



	For each task, we have three phases (i.e. task, partly trained task, final trained task)












	
class qlib.workflow.online.manager.OnlineManager(strategies: Union[qlib.workflow.online.strategy.OnlineStrategy, List[qlib.workflow.online.strategy.OnlineStrategy]], trainer: qlib.model.trainer.Trainer = None, begin_time: Union[str, pandas._libs.tslibs.timestamps.Timestamp] = None, freq='day')

	OnlineManager can manage online models with Online Strategy.
It also provides a history recording of which models are online at what time.


	
__init__(strategies: Union[qlib.workflow.online.strategy.OnlineStrategy, List[qlib.workflow.online.strategy.OnlineStrategy]], trainer: qlib.model.trainer.Trainer = None, begin_time: Union[str, pandas._libs.tslibs.timestamps.Timestamp] = None, freq='day')

	Init OnlineManager.
One OnlineManager must have at least one OnlineStrategy.


	Parameters

	
	strategies (Union[OnlineStrategy, List[OnlineStrategy]]) – an instance of OnlineStrategy or a list of OnlineStrategy


	begin_time (Union[str,pd.Timestamp], optional) – the OnlineManager will begin at this time. Defaults to None for using the latest date.


	trainer (qlib.model.trainer.Trainer) – the trainer to train task. None for using TrainerR.


	freq (str, optional) – data frequency. Defaults to “day”.













	
first_train(strategies: List[qlib.workflow.online.strategy.OnlineStrategy] = None, model_kwargs: dict = {})

	Get tasks from every strategy’s first_tasks method and train them.
If using DelayTrainer, it can finish training all together after every strategy’s first_tasks.


	Parameters

	
	strategies (List[OnlineStrategy]) – the strategies list (need this param when adding strategies). None for use default strategies.


	model_kwargs (dict) – the params for prepare_online_models













	
routine(cur_time: Union[str, pandas._libs.tslibs.timestamps.Timestamp] = None, task_kwargs: dict = {}, model_kwargs: dict = {}, signal_kwargs: dict = {})

	Typical update process for every strategy and record the online history.

The typical update process after a routine, such as day by day or month by month.
The process is: Update predictions -> Prepare tasks -> Prepare online models -> Prepare signals.

If using DelayTrainer, it can finish training all together after every strategy’s prepare_tasks.


	Parameters

	
	cur_time (Union[str,pd.Timestamp], optional) – run routine method in this time. Defaults to None.


	task_kwargs (dict) – the params for prepare_tasks


	model_kwargs (dict) – the params for prepare_online_models


	signal_kwargs (dict) – the params for prepare_signals













	
get_collector(**kwargs) → qlib.workflow.task.collect.MergeCollector

	Get the instance of Collector to collect results from every strategy.
This collector can be a basis as the signals preparation.


	Parameters

	**kwargs – the params for get_collector.



	Returns

	the collector to merge other collectors.



	Return type

	MergeCollector










	
add_strategy(strategies: Union[qlib.workflow.online.strategy.OnlineStrategy, List[qlib.workflow.online.strategy.OnlineStrategy]])

	Add some new strategies to OnlineManager.


	Parameters

	strategy (Union[OnlineStrategy, List[OnlineStrategy]]) – a list of OnlineStrategy










	
prepare_signals(prepare_func: Callable = <qlib.model.ens.ensemble.AverageEnsemble object>, over_write=False)

	After preparing the data of the last routine (a box in box-plot) which means the end of the routine, we can prepare trading signals for the next routine.

NOTE: Given a set prediction, all signals before these prediction end times will be prepared well.

Even if the latest signal already exists, the latest calculation result will be overwritten.


Note

Given a prediction of a certain time, all signals before this time will be prepared well.




	Parameters

	
	prepare_func (Callable, optional) – Get signals from a dict after collecting. Defaults to AverageEnsemble(), the results collected by MergeCollector must be {xxx:pred}.


	over_write (bool, optional) – If True, the new signals will overwrite. If False, the new signals will append to the end of signals. Defaults to False.






	Returns

	the signals.



	Return type

	pd.DataFrame










	
get_signals() → Union[pandas.core.series.Series, pandas.core.frame.DataFrame]

	Get prepared online signals.


	Returns

	pd.Series for only one signals every datetime.
pd.DataFrame for multiple signals, for example, buy and sell operations use different trading signals.



	Return type

	Union[pd.Series, pd.DataFrame]










	
simulate(end_time=None, frequency='day', task_kwargs={}, model_kwargs={}, signal_kwargs={}) → Union[pandas.core.series.Series, pandas.core.frame.DataFrame]

	Starting from the current time, this method will simulate every routine in OnlineManager until the end time.

Considering the parallel training, the models and signals can be prepared after all routine simulating.

The delay training way can be DelayTrainer and the delay preparing signals way can be delay_prepare.


	Parameters

	
	end_time – the time the simulation will end


	frequency – the calendar frequency


	task_kwargs (dict) – the params for prepare_tasks


	model_kwargs (dict) – the params for prepare_online_models


	signal_kwargs (dict) – the params for prepare_signals






	Returns

	pd.Series for only one signals every datetime.
pd.DataFrame for multiple signals, for example, buy and sell operations use different trading signals.



	Return type

	Union[pd.Series, pd.DataFrame]










	
delay_prepare(model_kwargs={}, signal_kwargs={})

	Prepare all models and signals if something is waiting for preparation.


	Parameters

	
	model_kwargs – the params for end_train


	signal_kwargs – the params for prepare_signals


















Online Strategy

OnlineStrategy module is an element of online serving.


	
class qlib.workflow.online.strategy.OnlineStrategy(name_id: str)

	OnlineStrategy is working with Online Manager, responding to how the tasks are generated, the models are updated and signals are prepared.


	
__init__(name_id: str)

	Init OnlineStrategy.
This module MUST use Trainer to finishing model training.


	Parameters

	
	name_id (str) – a unique name or id.


	trainer (qlib.model.trainer.Trainer, optional) – a instance of Trainer. Defaults to None.













	
prepare_tasks(cur_time, **kwargs) → List[dict]

	After the end of a routine, check whether we need to prepare and train some new tasks based on cur_time (None for latest)..
Return the new tasks waiting for training.

You can find the last online models by OnlineTool.online_models.






	
prepare_online_models(trained_models, cur_time=None) → List[object]

	Select some models from trained models and set them to online models.
This is a typical implementation to online all trained models, you can override it to implement the complex method.
You can find the last online models by OnlineTool.online_models if you still need them.

NOTE: Reset all online models to trained models. If there are no trained models, then do nothing.


	NOTE:

	Current implementation is very naive. Here is a more complex situation which is more closer to the
practical scenarios.
1. Train new models at the day before test_start (at time stamp T)
2. Switch models at the test_start (at time timestamp T + 1 typically)






	Parameters

	
	models (list) – a list of models.


	cur_time (pd.Dataframe) – current time from OnlineManger. None for the latest.






	Returns

	a list of online models.



	Return type

	List[object]










	
first_tasks() → List[dict]

	Generate a series of tasks firstly and return them.






	
get_collector() → qlib.workflow.task.collect.Collector

	Get the instance of Collector to collect different results of this strategy.


	For example:

	
	collect predictions in Recorder


	collect signals in a txt file









	Returns

	Collector














	
class qlib.workflow.online.strategy.RollingStrategy(name_id: str, task_template: Union[dict, List[dict]], rolling_gen: qlib.workflow.task.gen.RollingGen)

	This example strategy always uses the latest rolling model sas online models.


	
__init__(name_id: str, task_template: Union[dict, List[dict]], rolling_gen: qlib.workflow.task.gen.RollingGen)

	Init RollingStrategy.

Assumption: the str of name_id, the experiment name, and the trainer’s experiment name are the same.


	Parameters

	
	name_id (str) – a unique name or id. Will be also the name of the Experiment.


	task_template (Union[dict, List[dict]]) – a list of task_template or a single template, which will be used to generate many tasks using rolling_gen.


	rolling_gen (RollingGen) – an instance of RollingGen













	
get_collector(process_list=[<qlib.model.ens.group.RollingGroup object>], rec_key_func=None, rec_filter_func=None, artifacts_key=None)

	Get the instance of Collector to collect results. The returned collector must distinguish results in different models.

Assumption: the models can be distinguished based on the model name and rolling test segments.
If you do not want this assumption, please implement your method or use another rec_key_func.


	Parameters

	
	rec_key_func (Callable) – a function to get the key of a recorder. If None, use recorder id.


	rec_filter_func (Callable, optional) – filter the recorder by return True or False. Defaults to None.


	artifacts_key (List[str], optional) – the artifacts key you want to get. If None, get all artifacts.













	
first_tasks() → List[dict]

	Use rolling_gen to generate different tasks based on task_template.


	Returns

	a list of tasks



	Return type

	List[dict]










	
prepare_tasks(cur_time) → List[dict]

	Prepare new tasks based on cur_time (None for the latest).

You can find the last online models by OnlineToolR.online_models.


	Returns

	a list of new tasks.



	Return type

	List[dict]















Online Tool

OnlineTool is a module to set and unset a series of online models.
The online models are some decisive models in some time points, which can be changed with the change of time.
This allows us to use efficient submodels as the market-style changing.


	
class qlib.workflow.online.utils.OnlineTool

	OnlineTool will manage online models in an experiment that includes the model recorders.


	
__init__()

	Init OnlineTool.






	
set_online_tag(tag, recorder: Union[list, object])

	Set tag to the model to sign whether online.


	Parameters

	
	tag (str) – the tags in ONLINE_TAG, OFFLINE_TAG


	recorder (Union[list,object]) – the model’s recorder













	
get_online_tag(recorder: object) → str

	Given a model recorder and return its online tag.


	Parameters

	recorder (Object) – the model’s recorder



	Returns

	the online tag



	Return type

	str










	
reset_online_tag(recorder: Union[list, object])

	Offline all models and set the recorders to ‘online’.


	Parameters

	recorder (Union[list,object]) – the recorder you want to reset to ‘online’.










	
online_models() → list

	Get current online models


	Returns

	a list of online models.



	Return type

	list










	
update_online_pred(to_date=None)

	Update the predictions of online models to to_date.


	Parameters

	to_date (pd.Timestamp) – the pred before this date will be updated. None for updating to the latest.














	
class qlib.workflow.online.utils.OnlineToolR(default_exp_name: str = None)

	The implementation of OnlineTool based on (R)ecorder.


	
__init__(default_exp_name: str = None)

	Init OnlineToolR.


	Parameters

	default_exp_name (str) – the default experiment name.










	
set_online_tag(tag, recorder: Union[qlib.workflow.recorder.Recorder, List[T]])

	Set tag to the model’s recorder to sign whether online.


	Parameters

	
	tag (str) – the tags in ONLINE_TAG, NEXT_ONLINE_TAG, OFFLINE_TAG


	recorder (Union[Recorder, List]) – a list of Recorder or an instance of Recorder













	
get_online_tag(recorder: qlib.workflow.recorder.Recorder) → str

	Given a model recorder and return its online tag.


	Parameters

	recorder (Recorder) – an instance of recorder



	Returns

	the online tag



	Return type

	str










	
reset_online_tag(recorder: Union[qlib.workflow.recorder.Recorder, List[T]], exp_name: str = None)

	Offline all models and set the recorders to ‘online’.


	Parameters

	
	recorder (Union[Recorder, List]) – the recorder you want to reset to ‘online’.


	exp_name (str) – the experiment name. If None, then use default_exp_name.













	
online_models(exp_name: str = None) → list

	Get current online models


	Parameters

	exp_name (str) – the experiment name. If None, then use default_exp_name.



	Returns

	a list of online models.



	Return type

	list










	
update_online_pred(to_date=None, from_date=None, exp_name: str = None)

	Update the predictions of online models to to_date.


	Parameters

	
	to_date (pd.Timestamp) – the pred before this date will be updated. None for updating to latest time in Calendar.


	exp_name (str) – the experiment name. If None, then use default_exp_name.


















RecordUpdater

Updater is a module to update artifacts such as predictions when the stock data is updating.


	
class qlib.workflow.online.update.RMDLoader(rec: qlib.workflow.recorder.Recorder)

	Recorder Model Dataset Loader


	
__init__(rec: qlib.workflow.recorder.Recorder)

	Initialize self.  See help(type(self)) for accurate signature.






	
get_dataset(start_time, end_time, segments=None, unprepared_dataset: Optional[qlib.data.dataset.DatasetH] = None) → qlib.data.dataset.DatasetH

	Load, config and setup dataset.

This dataset is for inference.


	Parameters

	
	start_time – the start_time of underlying data


	end_time – the end_time of underlying data


	segments – dict
the segments config for dataset
Due to the time series dataset (TSDatasetH), the test segments maybe different from start_time and end_time


	unprepared_dataset – Optional[DatasetH]
if user don’t want to load dataset from recorder, please specify user’s dataset






	Returns

	the instance of DatasetH



	Return type

	DatasetH














	
class qlib.workflow.online.update.RecordUpdater(record: qlib.workflow.recorder.Recorder, *args, **kwargs)

	Update a specific recorders


	
__init__(record: qlib.workflow.recorder.Recorder, *args, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.






	
update(*args, **kwargs)

	Update info for specific recorder










	
class qlib.workflow.online.update.DSBasedUpdater(record: qlib.workflow.recorder.Recorder, to_date=None, from_date=None, hist_ref: Optional[int] = None, freq='day', fname='pred.pkl', loader_cls: type = <class 'qlib.workflow.online.update.RMDLoader'>)

	Dataset-Based Updater


	Providing updating feature for Updating data based on Qlib Dataset




Assumption


	Based on Qlib dataset


	The data to be updated is a multi-level index pd.DataFrame. For example label, prediction.










	
__init__(record: qlib.workflow.recorder.Recorder, to_date=None, from_date=None, hist_ref: Optional[int] = None, freq='day', fname='pred.pkl', loader_cls: type = <class 'qlib.workflow.online.update.RMDLoader'>)

	Init PredUpdater.

Expected behavior in following cases:


	if to_date is greater than the max date in the calendar, the data will be updated to the latest date


	if there are data before from_date or after to_date, only the data between from_date and to_date are affected.





	Parameters

	
	record – Recorder


	to_date – update to prediction to the to_date

if to_date is None:


data will updated to the latest date.







	from_date – the update will start from from_date

if from_date is None:


the updating will occur on the next tick after the latest data in historical data







	hist_ref – int
Sometimes, the dataset will have historical depends.
Leave the problem to users to set the length of historical dependency
If user doesn’t specify this parameter, Updater will try to load dataset to automatically determine the hist_ref


Note

the start_time is not included in the hist_ref; So the hist_ref will be step_len - 1 in most cases






	loader_cls – type
the class to load the model and dataset













	
prepare_data(unprepared_dataset: Optional[qlib.data.dataset.DatasetH] = None) → qlib.data.dataset.DatasetH

	Load dataset
- if unprepared_dataset is specified, then prepare the dataset directly
- Otherwise,

Separating this function will make it easier to reuse the dataset


	Returns

	the instance of DatasetH



	Return type

	DatasetH










	
update(dataset: qlib.data.dataset.DatasetH = None, write: bool = True, ret_new: bool = False) → Optional[object]

	
	Parameters

	
	dataset (DatasetH) – DatasetH: the instance of DatasetH. None for prepare it again.


	write (bool) – will the the write action be executed


	ret_new (bool) – will the updated data be returned






	Returns

	the updated dataset



	Return type

	Optional[object]










	
get_update_data(dataset: qlib.data.dataset.Dataset) → pandas.core.frame.DataFrame

	return the updated data based on the given dataset

The difference between get_update_data and update
- update_date only include some data specific feature
- update include some general routine steps(e.g. prepare dataset, checking)










	
class qlib.workflow.online.update.PredUpdater(record: qlib.workflow.recorder.Recorder, to_date=None, from_date=None, hist_ref: Optional[int] = None, freq='day', fname='pred.pkl', loader_cls: type = <class 'qlib.workflow.online.update.RMDLoader'>)

	Update the prediction in the Recorder


	
get_update_data(dataset: qlib.data.dataset.Dataset) → pandas.core.frame.DataFrame

	return the updated data based on the given dataset

The difference between get_update_data and update
- update_date only include some data specific feature
- update include some general routine steps(e.g. prepare dataset, checking)










	
class qlib.workflow.online.update.LabelUpdater(record: qlib.workflow.recorder.Recorder, to_date=None, **kwargs)

	Update the label in the recorder

Assumption
- The label is generated from record_temp.SignalRecord.


	
__init__(record: qlib.workflow.recorder.Recorder, to_date=None, **kwargs)

	Init PredUpdater.

Expected behavior in following cases:


	if to_date is greater than the max date in the calendar, the data will be updated to the latest date


	if there are data before from_date or after to_date, only the data between from_date and to_date are affected.





	Parameters

	
	record – Recorder


	to_date – update to prediction to the to_date

if to_date is None:


data will updated to the latest date.







	from_date – the update will start from from_date

if from_date is None:


the updating will occur on the next tick after the latest data in historical data







	hist_ref – int
Sometimes, the dataset will have historical depends.
Leave the problem to users to set the length of historical dependency
If user doesn’t specify this parameter, Updater will try to load dataset to automatically determine the hist_ref


Note

the start_time is not included in the hist_ref; So the hist_ref will be step_len - 1 in most cases






	loader_cls – type
the class to load the model and dataset













	
get_update_data(dataset: qlib.data.dataset.Dataset) → pandas.core.frame.DataFrame

	return the updated data based on the given dataset

The difference between get_update_data and update
- update_date only include some data specific feature
- update include some general routine steps(e.g. prepare dataset, checking)












Utils


Serializable


	
class qlib.utils.serial.Serializable

	Serializable will change the behaviors of pickle.


The rule to tell if a attribute will be kept or dropped when dumping.
The rule with higher priorities is on the top
- in the config attribute list -> always dropped
- in the include attribute list -> always kept
- in the exclude attribute list -> always dropped
- name not starts with _ -> kept
- name starts with _ -> kept if dump_all is true else dropped




It provides a syntactic sugar for distinguish the attributes which user doesn’t want.
- For examples, a learnable Datahandler just wants to save the parameters without data when dumping to disk


	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.






	
dump_all

	will the object dump all object






	
config(recursive=False, **kwargs)

	configure the serializable object


	Parameters

	
	may include following keys (kwargs) – 
	dump_allbool

	will the object dump all object



	excludelist

	What attribute will not be dumped



	includelist

	What attribute will be dumped








	recursive (bool) – will the configuration be recursive













	
to_pickle(path: Union[pathlib.Path, str], **kwargs)

	Dump self to a pickle file.

path (Union[Path, str]): the path to dump

kwargs may include following keys



	dump_allbool

	will the object dump all object



	excludelist

	What attribute will not be dumped



	includelist

	What attribute will be dumped













	
classmethod load(filepath)

	Load the serializable class from a filepath.


	Parameters

	filepath (str) – the path of file



	Raises

	TypeError – the pickled file must be type(cls)



	Returns

	the instance of type(cls)



	Return type

	type(cls)










	
classmethod get_backend()

	Return the real backend of a Serializable class. The pickle_backend value can be “pickle” or “dill”.


	Returns

	pickle or dill module based on pickle_backend



	Return type

	module










	
static general_dump(obj, path: Union[pathlib.Path, str])

	A general dumping method for object


	Parameters

	
	obj (object) – the object to be dumped


	path (Union[Path, str]) – the target path the data will be dumped



















RL


Base Component


	
class qlib.rl.Interpreter

	Interpreter is a media between states produced by simulators and states needed by RL policies.
Interpreters are two-way:


	From simulator state to policy state (aka observation), see StateInterpreter.


	From policy action to action accepted by simulator, see ActionInterpreter.




Inherit one of the two sub-classes to define your own interpreter.
This super-class is only used for isinstance check.

Interpreters are recommended to be stateless, meaning that storing temporary information with self.xxx
in interpreter is anti-pattern. In future, we might support register some interpreter-related
states by calling self.env.register_state(), but it’s not planned for first iteration.






	
class qlib.rl.StateInterpreter

	State Interpreter that interpret execution result of qlib executor into rl env state


	
validate(obs: ObsType) → None

	Validate whether an observation belongs to the pre-defined observation space.






	
interpret(simulator_state: StateType) → ObsType

	Interpret the state of simulator.


	Parameters

	simulator_state – Retrieved with simulator.get_state().



	Returns

	



	Return type

	State needed by policy. Should conform with the state space defined in observation_space.














	
class qlib.rl.ActionInterpreter

	Action Interpreter that interpret rl agent action into qlib orders


	
validate(action: PolicyActType) → None

	Validate whether an action belongs to the pre-defined action space.






	
interpret(simulator_state: StateType, action: PolicyActType) → ActType

	Convert the policy action to simulator action.


	Parameters

	
	simulator_state – Retrieved with simulator.get_state().


	action – Raw action given by policy.






	Returns

	



	Return type

	The action needed by simulator,














	
class qlib.rl.Reward

	Reward calculation component that takes a single argument: state of simulator. Returns a real number: reward.

Subclass should implement reward(simulator_state) to implement their own reward calculation recipe.


	
reward(simulator_state: SimulatorState) → float

	Implement this method for your own reward.










	
class qlib.rl.RewardCombination(rewards: Dict[str, Tuple[qlib.rl.reward.Reward, float]])

	Combination of multiple reward.


	
__init__(rewards: Dict[str, Tuple[qlib.rl.reward.Reward, float]]) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
reward(simulator_state: Any) → float

	Implement this method for your own reward.










	
class qlib.rl.Simulator(initial: InitialStateType, **kwargs)

	Simulator that resets with __init__, and transits with step(action).

To make the data-flow clear, we make the following restrictions to Simulator:


	The only way to modify the inner status of a simulator is by using step(action).


	External modules can read the status of a simulator by using simulator.get_state(),
and check whether the simulator is in the ending state by calling simulator.done().




A simulator is defined to be bounded with three types:


	InitialStateType that is the type of the data used to create the simulator.


	StateType that is the type of the status (state) of the simulator.


	ActType that is the type of the action, which is the input received in each step.




Different simulators might share the same StateType. For example, when they are dealing with the same task,
but with different simulation implementation. With the same type, they can safely share other components in the MDP.

Simulators are ephemeral. The lifecycle of a simulator starts with an initial state, and ends with the trajectory.
In another word, when the trajectory ends, simulator is recycled.
If simulators want to share context between (e.g., for speed-up purposes),
this could be done by accessing the weak reference of environment wrapper.


	
env

	A reference of env-wrapper, which could be useful in some corner cases.
Simulators are discouraged to use this, because it’s prone to induce errors.






	
__init__(initial: InitialStateType, **kwargs) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
step(action: ActType) → None

	Receives an action of ActType.

Simulator should update its internal state, and return None.
The updated state can be retrieved with simulator.get_state().






	
done() → bool

	Check whether the simulator is in a “done” state.
When simulator is in a “done” state,
it should no longer receives any step request.
As simulators are ephemeral, to reset the simulator,
the old one should be destroyed and a new simulator can be created.











Strategy


	
class qlib.rl.strategy.SingleOrderStrategy(order: Order, trade_range: TradeRange | None = None)

	Strategy used to generate a trade decision with exactly one order.


	
__init__(order: Order, trade_range: TradeRange | None = None) → None

	
	Parameters

	
	outer_trade_decision (BaseTradeDecision, optional) – the trade decision of outer strategy which this strategy relies, and it will be traded in
[start_time, end_time], by default None


	If the strategy is used to split trade decision, it will be used


	If the strategy is used for portfolio management, it can be ignored







	level_infra (LevelInfrastructure, optional) – level shared infrastructure for backtesting, including trade calendar


	common_infra (CommonInfrastructure, optional) – common infrastructure for backtesting, including trade_account, trade_exchange, .etc


	trade_exchange (Exchange) – exchange that provides market info, used to deal order and generate report


	If trade_exchange is None, self.trade_exchange will be set with common_infra


	It allows different trade_exchanges is used in different executions.


	For example:



	In daily execution, both daily exchange and minutely are usable, but the daily exchange is
recommended because it run faster.


	In minutely execution, the daily exchange is not usable, only the minutely exchange is recommended.

























	
generate_trade_decision(execute_result: list | None = None) → TradeDecisionWO

	Generate trade decision in each trading bar


	Parameters

	execute_result (List[object], optional) – the executed result for trade decision, by default None


	When call the generate_trade_decision firstly, execute_result could be None




















Trainer

Train, test, inference utilities.


	
class qlib.rl.trainer.Trainer(*, max_iters: int | None = None, val_every_n_iters: int | None = None, loggers: LogWriter | List[LogWriter] | None = None, callbacks: List[Callback] | None = None, finite_env_type: FiniteEnvType = 'subproc', concurrency: int = 2, fast_dev_run: int | None = None)

	Utility to train a policy on a particular task.

Different from traditional DL trainer, the iteration of this trainer is “collect”,
rather than “epoch”, or “mini-batch”.
In each collect, Collector collects a number of policy-env interactions, and accumulates
them into a replay buffer. This buffer is used as the “data” to train the policy.
At the end of each collect, the policy is updated several times.

The API has some resemblence with PyTorch Lightning [https://pytorch-lightning.readthedocs.io/],
but it’s essentially different because this trainer is built for RL applications, and thus
most configurations are under RL context.
We are still looking for ways to incorporate existing trainer libraries, because it looks like
big efforts to build a trainer as powerful as those libraries, and also, that’s not our primary goal.

It’s essentially different
tianshou’s built-in trainers [https://tianshou.readthedocs.io/en/master/api/tianshou.trainer.html],
as it’s far much more complicated than that.


	Parameters

	
	max_iters – Maximum iterations before stopping.


	val_every_n_iters – Perform validation every n iterations (i.e., training collects).


	logger – Logger to record the backtest results. Logger must be present because
without logger, all information will be lost.


	finite_env_type – Type of finite env implementation.


	concurrency – Parallel workers.


	fast_dev_run – Create a subset for debugging.
How this is implemented depends on the implementation of training vessel.
For TrainingVessel, if greater than zero,
a random subset sized fast_dev_run will be used
instead of train_initial_states and val_initial_states.









	
should_stop = None

	Set to stop the training.






	
metrics = None

	Numeric metrics of produced in train/val/test.
In the middle of training / validation, metrics will be of the latest episode.
When each iteration of training / validation finishes, metrics will be the aggregation
of all episodes encountered in this iteration.

Cleared on every new iteration of training.

In fit, validation metrics will be prefixed with val/.






	
current_iter = None

	Current iteration (collect) of training.






	
__init__(*, max_iters: int | None = None, val_every_n_iters: int | None = None, loggers: LogWriter | List[LogWriter] | None = None, callbacks: List[Callback] | None = None, finite_env_type: FiniteEnvType = 'subproc', concurrency: int = 2, fast_dev_run: int | None = None)

	Initialize self.  See help(type(self)) for accurate signature.






	
loggers = None

	A list of log writers.






	
initialize()

	Initialize the whole training process.

The states here should be synchronized with state_dict.






	
initialize_iter()

	Initialize one iteration / collect.






	
state_dict() → dict

	Putting every states of current training into a dict, at best effort.

It doesn’t try to handle all the possible kinds of states in the middle of one training collect.
For most cases at the end of each iteration, things should be usually correct.

Note that it’s also intended behavior that replay buffer data in the collector will be lost.






	
load_state_dict(state_dict: dict) → None

	Load all states into current trainer.






	
named_callbacks() → Dict[str, qlib.rl.trainer.callbacks.Callback]

	Retrieve a collection of callbacks where each one has a name.
Useful when saving checkpoints.






	
named_loggers() → Dict[str, qlib.rl.utils.log.LogWriter]

	Retrieve a collection of loggers where each one has a name.
Useful when saving checkpoints.






	
fit(vessel: TrainingVesselBase, ckpt_path: Path | None = None) → None

	Train the RL policy upon the defined simulator.


	Parameters

	
	vessel – A bundle of all elements used in training.


	ckpt_path – Load a pre-trained / paused training checkpoint.













	
test(vessel: qlib.rl.trainer.vessel.TrainingVesselBase) → None

	Test the RL policy against the simulator.

The simulator will be fed with data generated in test_seed_iterator.


	Parameters

	vessel – A bundle of all related elements.










	
venv_from_iterator(iterator: Iterable[InitialStateType]) → qlib.rl.utils.finite_env.FiniteVectorEnv

	Create a vectorized environment from iterator and the training vessel.










	
class qlib.rl.trainer.TrainingVessel(*, simulator_fn: Callable[[InitialStateType], Simulator[InitialStateType, StateType, ActType]], state_interpreter: StateInterpreter[StateType, ObsType], action_interpreter: ActionInterpreter[StateType, PolicyActType, ActType], policy: BasePolicy, reward: Reward, train_initial_states: Sequence[InitialStateType] | None = None, val_initial_states: Sequence[InitialStateType] | None = None, test_initial_states: Sequence[InitialStateType] | None = None, buffer_size: int = 20000, episode_per_iter: int = 1000, update_kwargs: Dict[str, Any] = None)

	The default implementation of training vessel.

__init__ accepts a sequence of initial states so that iterator can be created.
train, validate, test each do one collect (and also update in train).
By default, the train initial states will be repeated infinitely during training,
and collector will control the number of episodes for each iteration.
In validation and testing, the val / test initial states will be used exactly once.

Extra hyper-parameters (only used in train) include:


	buffer_size: Size of replay buffer.


	episode_per_iter: Episodes per collect at training. Can be overridden by fast dev run.


	update_kwargs: Keyword arguments appearing in policy.update.
For example, dict(repeat=10, batch_size=64).





	
__init__(*, simulator_fn: Callable[[InitialStateType], Simulator[InitialStateType, StateType, ActType]], state_interpreter: StateInterpreter[StateType, ObsType], action_interpreter: ActionInterpreter[StateType, PolicyActType, ActType], policy: BasePolicy, reward: Reward, train_initial_states: Sequence[InitialStateType] | None = None, val_initial_states: Sequence[InitialStateType] | None = None, test_initial_states: Sequence[InitialStateType] | None = None, buffer_size: int = 20000, episode_per_iter: int = 1000, update_kwargs: Dict[str, Any] = None)

	Initialize self.  See help(type(self)) for accurate signature.






	
train_seed_iterator() → ContextManager[Iterable[InitialStateType]] | Iterable[InitialStateType]

	Override this to create a seed iterator for training.
If the iterable is a context manager, the whole training will be invoked in the with-block,
and the iterator will be automatically closed after the training is done.






	
val_seed_iterator() → ContextManager[Iterable[InitialStateType]] | Iterable[InitialStateType]

	Override this to create a seed iterator for validation.






	
test_seed_iterator() → ContextManager[Iterable[InitialStateType]] | Iterable[InitialStateType]

	Override this to create a seed iterator for testing.






	
train(vector_env: qlib.rl.utils.finite_env.FiniteVectorEnv) → Dict[str, Any]

	Create a collector and collects episode_per_iter episodes.
Update the policy on the collected replay buffer.






	
validate(vector_env: qlib.rl.utils.finite_env.FiniteVectorEnv) → Dict[str, Any]

	Implement this to validate the policy once.






	
test(vector_env: qlib.rl.utils.finite_env.FiniteVectorEnv) → Dict[str, Any]

	Implement this to evaluate the policy on test environment once.










	
class qlib.rl.trainer.TrainingVesselBase

	A ship that contains simulator, interpreter, and policy, will be sent to trainer.
This class controls algorithm-related parts of training, while trainer is responsible for runtime part.

The ship also defines the most important logic of the core training part,
and (optionally) some callbacks to insert customized logics at specific events.


	
train_seed_iterator() → ContextManager[Iterable[InitialStateType]] | Iterable[InitialStateType]

	Override this to create a seed iterator for training.
If the iterable is a context manager, the whole training will be invoked in the with-block,
and the iterator will be automatically closed after the training is done.






	
val_seed_iterator() → ContextManager[Iterable[InitialStateType]] | Iterable[InitialStateType]

	Override this to create a seed iterator for validation.






	
test_seed_iterator() → ContextManager[Iterable[InitialStateType]] | Iterable[InitialStateType]

	Override this to create a seed iterator for testing.






	
train(vector_env: tianshou.env.venvs.BaseVectorEnv) → Dict[str, Any]

	Implement this to train one iteration. In RL, one iteration usually refers to one collect.






	
validate(vector_env: qlib.rl.utils.finite_env.FiniteVectorEnv) → Dict[str, Any]

	Implement this to validate the policy once.






	
test(vector_env: qlib.rl.utils.finite_env.FiniteVectorEnv) → Dict[str, Any]

	Implement this to evaluate the policy on test environment once.






	
state_dict() → Dict[KT, VT]

	Return a checkpoint of current vessel state.






	
load_state_dict(state_dict: Dict[KT, VT]) → None

	Restore a checkpoint from a previously saved state dict.










	
class qlib.rl.trainer.Checkpoint(dirpath: Path, filename: str = '{iter:03d}.pth', save_latest: Literal[('link', 'copy')] | None = 'link', every_n_iters: int | None = None, time_interval: int | None = None, save_on_fit_end: bool = True)

	Save checkpoints periodically for persistence and recovery.

Reference: https://github.com/PyTorchLightning/pytorch-lightning/blob/bfa8b7be/pytorch_lightning/callbacks/model_checkpoint.py


	Parameters

	
	dirpath – Directory to save the checkpoint file.


	filename – Checkpoint filename. Can contain named formatting options to be auto-filled.
For example: {iter:03d}-{reward:.2f}.pth.
Supported argument names are:


	iter (int)


	metrics in trainer.metrics


	time string, in the format of %Y%m%d%H%M%S







	save_latest – Save the latest checkpoint in latest.pth.
If link, latest.pth will be created as a softlink.
If copy, latest.pth will be stored as an individual copy.
Set to none to disable this.


	every_n_iters – Checkpoints are saved at the end of every n iterations of training,
after validation if applicable.


	time_interval – Maximum time (seconds) before checkpoints save again.


	save_on_fit_end – Save one last checkpoint at the end to fit.
Do nothing if a checkpoint is already saved there.









	
__init__(dirpath: Path, filename: str = '{iter:03d}.pth', save_latest: Literal[('link', 'copy')] | None = 'link', every_n_iters: int | None = None, time_interval: int | None = None, save_on_fit_end: bool = True)

	Initialize self.  See help(type(self)) for accurate signature.






	
on_fit_end(trainer: Trainer, vessel: TrainingVesselBase) → None

	Called after the whole fit process ends.






	
on_iter_end(trainer: Trainer, vessel: TrainingVesselBase) → None

	Called upon every end of iteration.
This is called after the bump of current_iter,
when the previous iteration is considered complete.










	
class qlib.rl.trainer.EarlyStopping(monitor: str = 'reward', min_delta: float = 0.0, patience: int = 0, mode: Literal[('min', 'max')] = 'max', baseline: float | None = None, restore_best_weights: bool = False)

	Stop training when a monitored metric has stopped improving.

The earlystopping callback will be triggered each time validation ends.
It will examine the metrics produced in validation,
and get the metric with name monitor` (``monitor is reward by default),
to check whether it’s no longer increasing / decreasing.
It takes min_delta and patience if applicable.
If it’s found to be not increasing / decreasing any more.
trainer.should_stop will be set to true,
and the training terminates.

Implementation reference: https://github.com/keras-team/keras/blob/v2.9.0/keras/callbacks.py#L1744-L1893


	
__init__(monitor: str = 'reward', min_delta: float = 0.0, patience: int = 0, mode: Literal[('min', 'max')] = 'max', baseline: float | None = None, restore_best_weights: bool = False)

	Initialize self.  See help(type(self)) for accurate signature.






	
state_dict() → dict

	Get a state dict of the callback for pause and resume.






	
load_state_dict(state_dict: dict) → None

	Resume the callback from a saved state dict.






	
on_fit_start(trainer: Trainer, vessel: TrainingVesselBase) → None

	Called before the whole fit process begins.






	
on_validate_end(trainer: Trainer, vessel: TrainingVesselBase) → None

	Called when the validation ends.










	
class qlib.rl.trainer.MetricsWriter(dirpath: pathlib.Path)

	Dump training metrics to file.


	
__init__(dirpath: pathlib.Path) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
on_train_end(trainer: Trainer, vessel: TrainingVesselBase) → None

	Called when the training ends.
To access all outputs produced during training, cache the data in either trainer and vessel,
and post-process them in this hook.






	
on_validate_end(trainer: Trainer, vessel: TrainingVesselBase) → None

	Called when the validation ends.










	
qlib.rl.trainer.train(simulator_fn: Callable[[InitialStateType], qlib.rl.simulator.Simulator], state_interpreter: qlib.rl.interpreter.StateInterpreter, action_interpreter: qlib.rl.interpreter.ActionInterpreter, initial_states: Sequence[InitialStateType], policy: tianshou.policy.base.BasePolicy, reward: qlib.rl.reward.Reward, vessel_kwargs: Dict[str, Any], trainer_kwargs: Dict[str, Any]) → None

	Train a policy with the parallelism provided by RL framework.

Experimental API. Parameters might change shortly.


	Parameters

	
	simulator_fn – Callable receiving initial seed, returning a simulator.


	state_interpreter – Interprets the state of simulators.


	action_interpreter – Interprets the policy actions.


	initial_states – Initial states to iterate over. Every state will be run exactly once.


	policy – Policy to train against.


	reward – Reward function.


	vessel_kwargs – Keyword arguments passed to TrainingVessel, like episode_per_iter.


	trainer_kwargs – Keyword arguments passed to Trainer, like finite_env_type, concurrency.













	
qlib.rl.trainer.backtest(simulator_fn: Callable[[InitialStateType], Simulator], state_interpreter: StateInterpreter, action_interpreter: ActionInterpreter, initial_states: Sequence[InitialStateType], policy: BasePolicy, logger: LogWriter | List[LogWriter], reward: Reward | None = None, finite_env_type: FiniteEnvType = 'subproc', concurrency: int = 2) → None

	Backtest with the parallelism provided by RL framework.

Experimental API. Parameters might change shortly.


	Parameters

	
	simulator_fn – Callable receiving initial seed, returning a simulator.


	state_interpreter – Interprets the state of simulators.


	action_interpreter – Interprets the policy actions.


	initial_states – Initial states to iterate over. Every state will be run exactly once.


	policy – Policy to test against.


	logger – Logger to record the backtest results. Logger must be present because
without logger, all information will be lost.


	reward – Optional reward function. For backtest, this is for testing the rewards
and logging them only.


	finite_env_type – Type of finite env implementation.


	concurrency – Parallel workers.














Order Execution

Currently it supports single-asset order execution.
Multi-asset is on the way.


	
class qlib.rl.order_execution.FullHistoryStateInterpreter(max_step: int, data_ticks: int, data_dim: int, processed_data_provider: dict | ProcessedDataProvider)

	The observation of all the history, including today (until this moment), and yesterday.


	Parameters

	
	max_step – Total number of steps (an upper-bound estimation). For example, 390min / 30min-per-step = 13 steps.


	data_ticks – Equal to the total number of records. For example, in SAOE per minute,
the total ticks is the length of day in minutes.


	data_dim – Number of dimensions in data.


	processed_data_provider – Provider of the processed data.









	
__init__(max_step: int, data_ticks: int, data_dim: int, processed_data_provider: dict | ProcessedDataProvider) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
interpret(state: qlib.rl.order_execution.state.SAOEState) → qlib.rl.order_execution.interpreter.FullHistoryObs

	Interpret the state of simulator.


	Parameters

	simulator_state – Retrieved with simulator.get_state().



	Returns

	



	Return type

	State needed by policy. Should conform with the state space defined in observation_space.














	
class qlib.rl.order_execution.CurrentStepStateInterpreter(max_step: int)

	The observation of current step.

Used when policy only depends on the latest state, but not history.
The key list is not full. You can add more if more information is needed by your policy.


	
__init__(max_step: int) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
interpret(state: qlib.rl.order_execution.state.SAOEState) → qlib.rl.order_execution.interpreter.CurrentStateObs

	Interpret the state of simulator.


	Parameters

	simulator_state – Retrieved with simulator.get_state().



	Returns

	



	Return type

	State needed by policy. Should conform with the state space defined in observation_space.














	
class qlib.rl.order_execution.CategoricalActionInterpreter(values: int | List[float], max_step: Optional[int] = None)

	Convert a discrete policy action to a continuous action, then multiplied by order.amount.


	Parameters

	
	values – It can be a list of length $L$: $[a_1, a_2, ldots, a_L]$.
Then when policy givens decision $x$, $a_x$ times order amount is the output.
It can also be an integer $n$, in which case the list of length $n+1$ is auto-generated,
i.e., $[0, 1/n, 2/n, ldots, n/n]$.


	max_step – Total number of steps (an upper-bound estimation). For example, 390min / 30min-per-step = 13 steps.









	
__init__(values: int | List[float], max_step: Optional[int] = None) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
interpret(state: qlib.rl.order_execution.state.SAOEState, action: int) → float

	Convert the policy action to simulator action.


	Parameters

	
	simulator_state – Retrieved with simulator.get_state().


	action – Raw action given by policy.






	Returns

	



	Return type

	The action needed by simulator,














	
class qlib.rl.order_execution.TwapRelativeActionInterpreter

	Convert a continuous ratio to deal amount.

The ratio is relative to TWAP on the remainder of the day.
For example, there are 5 steps left, and the left position is 300.
With TWAP strategy, in each position, 60 should be traded.
When this interpreter receives action $a$, its output is $60 cdot a$.


	
interpret(state: qlib.rl.order_execution.state.SAOEState, action: float) → float

	Convert the policy action to simulator action.


	Parameters

	
	simulator_state – Retrieved with simulator.get_state().


	action – Raw action given by policy.






	Returns

	



	Return type

	The action needed by simulator,














	
class qlib.rl.order_execution.Recurrent(obs_space: qlib.rl.order_execution.interpreter.FullHistoryObs, hidden_dim: int = 64, output_dim: int = 32, rnn_type: typing_extensions.Literal['rnn', 'lstm', 'gru'][rnn, lstm, gru] = 'gru', rnn_num_layers: int = 1)

	The network architecture proposed in OPD [https://seqml.github.io/opd/opd_aaai21_supplement.pdf].

At every time step the input of policy network is divided into two parts,
the public variables and the private variables. which are handled by raw_rnn
and pri_rnn in this network, respectively.

One minor difference is that, in this implementation, we don’t assume the direction to be fixed.
Thus, another dire_fc is added to produce an extra direction-related feature.


	
__init__(obs_space: qlib.rl.order_execution.interpreter.FullHistoryObs, hidden_dim: int = 64, output_dim: int = 32, rnn_type: typing_extensions.Literal['rnn', 'lstm', 'gru'][rnn, lstm, gru] = 'gru', rnn_num_layers: int = 1) → None

	Initializes internal Module state, shared by both nn.Module and ScriptModule.






	
forward(batch: tianshou.data.batch.Batch) → torch.Tensor

	Input should be a dict (at least) containing:


	data_processed: [N, T, C]


	cur_step: [N]  (int)


	cur_time: [N]  (int)


	position_history: [N, S]  (S is number of steps)


	target: [N]


	num_step: [N]  (int)


	acquiring: [N]  (0 or 1)













	
class qlib.rl.order_execution.AllOne(obs_space: gym.Space, action_space: gym.Space, fill_value: float | int = 1.0)

	Forward returns a batch full of 1.

Useful when implementing some baselines (e.g., TWAP).


	
__init__(obs_space: gym.Space, action_space: gym.Space, fill_value: float | int = 1.0) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
forward(batch: Batch, state: dict | Batch | np.ndarray = None, **kwargs) → Batch

	Compute action over the given batch data.


	Returns

	A Batch which MUST have the following keys:


	act an numpy.ndarray or a torch.Tensor, the action over                 given batch data.


	state a dict, an numpy.ndarray or a torch.Tensor, the                 internal state of the policy, None as default.










Other keys are user-defined. It depends on the algorithm. For example,

# some code
return Batch(logits=..., act=..., state=None, dist=...)





The keyword policy is reserved and the corresponding data will be
stored into the replay buffer. For instance,

# some code
return Batch(..., policy=Batch(log_prob=dist.log_prob(act)))
# and in the sampled data batch, you can directly use
# batch.policy.log_prob to get your data.






Note

In continuous action space, you should do another step “map_action” to get
the real action:

act = policy(batch).act  # doesn't map to the target action range
act = policy.map_action(act, batch)
















	
class qlib.rl.order_execution.PPO(network: torch.nn.modules.module.Module, obs_space: gym.spaces.space.Space, action_space: gym.spaces.space.Space, lr: float, weight_decay: float = 0.0, discount_factor: float = 1.0, max_grad_norm: float = 100.0, reward_normalization: bool = True, eps_clip: float = 0.3, value_clip: bool = True, vf_coef: float = 1.0, gae_lambda: float = 1.0, max_batch_size: int = 256, deterministic_eval: bool = True, weight_file: Optional[pathlib.Path] = None)

	A wrapper of tianshou PPOPolicy.

Differences:


	Auto-create actor and critic network. Supports discrete action space only.


	Dedup common parameters between actor network and critic network
(not sure whether this is included in latest tianshou or not).


	Support a weight_file that supports loading checkpoint.


	Some parameters’ default values are different from original.





	
__init__(network: torch.nn.modules.module.Module, obs_space: gym.spaces.space.Space, action_space: gym.spaces.space.Space, lr: float, weight_decay: float = 0.0, discount_factor: float = 1.0, max_grad_norm: float = 100.0, reward_normalization: bool = True, eps_clip: float = 0.3, value_clip: bool = True, vf_coef: float = 1.0, gae_lambda: float = 1.0, max_batch_size: int = 256, deterministic_eval: bool = True, weight_file: Optional[pathlib.Path] = None) → None

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.rl.order_execution.PAPenaltyReward(penalty: float = 100.0, scale: float = 1.0)

	Encourage higher PAs, but penalize stacking all the amounts within a very short time.
Formally, for each time step, the reward is \((PA_t * vol_t / target - vol_t^2 * penalty)\).


	Parameters

	
	penalty – The penalty for large volume in a short time.


	scale – The weight used to scale up or down the reward.









	
__init__(penalty: float = 100.0, scale: float = 1.0) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
reward(simulator_state: qlib.rl.order_execution.state.SAOEState) → float

	Implement this method for your own reward.










	
class qlib.rl.order_execution.SingleAssetOrderExecutionSimple(order: qlib.backtest.decision.Order, data_dir: pathlib.Path, feature_columns_today: List[str] = [], feature_columns_yesterday: List[str] = [], data_granularity: int = 1, ticks_per_step: int = 30, vol_threshold: Optional[float] = None)

	Single-asset order execution (SAOE) simulator.

As there’s no “calendar” in the simple simulator, ticks are used to trade.
A tick is a record (a line) in the pickle-styled data file.
Each tick is considered as a individual trading opportunity.
If such fine granularity is not needed, use ticks_per_step to
lengthen the ticks for each step.

In each step, the traded amount are “equally” separated to each tick,
then bounded by volume maximum execution volume (i.e., vol_threshold),
and if it’s the last step, try to ensure all the amount to be executed.


	Parameters

	
	order – The seed to start an SAOE simulator is an order.


	data_dir – Path to load backtest data.


	feature_columns_today – Columns of today’s feature.


	feature_columns_yesterday – Columns of yesterday’s feature.


	data_granularity – Number of ticks between consecutive data entries.


	ticks_per_step – How many ticks per step.


	vol_threshold – Maximum execution volume (divided by market execution volume).









	
__init__(order: qlib.backtest.decision.Order, data_dir: pathlib.Path, feature_columns_today: List[str] = [], feature_columns_yesterday: List[str] = [], data_granularity: int = 1, ticks_per_step: int = 30, vol_threshold: Optional[float] = None) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
ticks_index = None

	All available ticks for the day (not restricted to order).






	
ticks_for_order = None

	Ticks that is available for trading (sliced by order).






	
twap_price = None

	This price is used to compute price advantage.
It”s defined as the average price in the period from order”s start time to end time.






	
history_exec = None

	All execution history at every possible time ticks. See SAOEMetrics for available columns.
Index is datetime.






	
history_steps = None

	Positions at each step. The position before first step is also recorded.
See SAOEMetrics for available columns.
Index is datetime, which is the starting time of each step.






	
metrics = None

	Metrics. Only available when done.






	
step(amount: float) → None

	Execute one step or SAOE.


	Parameters

	amount – The amount you wish to deal. The simulator doesn’t guarantee all the amount to be successfully dealt.










	
done() → bool

	Check whether the simulator is in a “done” state.
When simulator is in a “done” state,
it should no longer receives any step request.
As simulators are ephemeral, to reset the simulator,
the old one should be destroyed and a new simulator can be created.










	
class qlib.rl.order_execution.SAOEStateAdapter(order: qlib.backtest.decision.Order, trade_decision: qlib.backtest.decision.BaseTradeDecision, executor: qlib.backtest.executor.BaseExecutor, exchange: qlib.backtest.exchange.Exchange, ticks_per_step: int, backtest_data: qlib.rl.data.native.IntradayBacktestData, data_granularity: int = 1)

	Maintain states of the environment. SAOEStateAdapter accepts execution results and update its internal state
according to the execution results with additional information acquired from executors & exchange. For example,
it gets the dealt order amount from execution results, and get the corresponding market price / volume from
exchange.

Example usage:

adapter = SAOEStateAdapter(...)
adapter.update(...)
state = adapter.saoe_state






	
__init__(order: qlib.backtest.decision.Order, trade_decision: qlib.backtest.decision.BaseTradeDecision, executor: qlib.backtest.executor.BaseExecutor, exchange: qlib.backtest.exchange.Exchange, ticks_per_step: int, backtest_data: qlib.rl.data.native.IntradayBacktestData, data_granularity: int = 1) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
generate_metrics_after_done() → None

	Generate metrics once the upper level execution is done










	
class qlib.rl.order_execution.SAOEMetrics

	Metrics for SAOE accumulated for a “period”.
It could be accumulated for a day, or a period of time (e.g., 30min), or calculated separately for every minute.


Warning

The type hints are for single elements. In lots of times, they can be vectorized.
For example, market_volume could be a list of float (or ndarray) rather tahn a single float.




	
stock_id = None

	Stock ID of this record.






	
datetime = None

	Datetime of this record (this is index in the dataframe).






	
direction = None

	Direction of the order. 0 for sell, 1 for buy.






	
market_volume = None

	(total) market volume traded in the period.






	
market_price = None

	Deal price. If it’s a period of time, this is the average market deal price.






	
amount = None

	Total amount (volume) strategy intends to trade.






	
inner_amount = None

	Total amount that the lower-level strategy intends to trade
(might be larger than amount, e.g., to ensure ffr).






	
deal_amount = None

	Amount that successfully takes effect (must be less than inner_amount).






	
trade_price = None

	The average deal price for this strategy.






	
trade_value = None

	Total worth of trading. In the simple simulation, trade_value = deal_amount * price.






	
position = None

	Position left after this “period”.






	
ffr = None

	Completed how much percent of the daily order.






	
pa = None

	Price advantage compared to baseline (i.e., trade with baseline market price).
The baseline is trade price when using TWAP strategy to execute this order.
Please note that there could be data leak here).
Unit is BP (basis point, 1/10000).










	
class qlib.rl.order_execution.SAOEState

	Data structure holding a state for SAOE simulator.


	
order

	The order we are dealing with.






	
cur_time

	
	




	Type

	Current time, e.g., 9










	
cur_step

	Current step, e.g., 0.






	
position

	Current remaining volume to execute.






	
history_exec

	See SingleAssetOrderExecution.history_exec.






	
history_steps

	See SingleAssetOrderExecution.history_steps.






	
metrics

	Daily metric, only available when the trading is in “done” state.






	
backtest_data

	Backtest data is included in the state.
Actually, only the time index of this data is needed, at this moment.
I include the full data so that algorithms (e.g., VWAP) that relies on the raw data can be implemented.
Interpreter can use this as they wish, but they should be careful not to leak future data.






	
ticks_per_step

	How many ticks for each step.






	
ticks_index

	31, …, 14:59].


	Type

	Trading ticks in all day, NOT sliced by order (defined in data) e.g., [9



	Type

	30, 9










	
ticks_for_order

	46, …, 14:44].


	Type

	Trading ticks sliced by order, e.g., [9



	Type

	45, 9














	
class qlib.rl.order_execution.SAOEStrategy(policy: BasePolicy, outer_trade_decision: BaseTradeDecision | None = None, level_infra: LevelInfrastructure | None = None, common_infra: CommonInfrastructure | None = None, data_granularity: int = 1, **kwargs)

	RL-based strategies that use SAOEState as state.


	
__init__(policy: BasePolicy, outer_trade_decision: BaseTradeDecision | None = None, level_infra: LevelInfrastructure | None = None, common_infra: CommonInfrastructure | None = None, data_granularity: int = 1, **kwargs) → None

	
	Parameters

	policy – RL policy for generate action










	
reset(outer_trade_decision: BaseTradeDecision | None = None, **kwargs) → None

	
	reset level_infra, used to reset trade calendar, .etc


	reset common_infra, used to reset trade_account, trade_exchange, .etc


	reset outer_trade_decision, used to make split decision




NOTE:
split this function into reset and _reset will make following cases more convenient
1. Users want to initialize his strategy by overriding reset, but they don’t want to affect the _reset
called when initialization






	
post_upper_level_exe_step() → None

	A hook for doing sth after the upper level executor finished its execution (for example, finalize
the metrics collection).






	
post_exe_step(execute_result: Optional[list]) → None

	A hook for doing sth after the corresponding executor finished its execution.


	Parameters

	execute_result – the execution result










	
generate_trade_decision(execute_result: list | None = None) → Union[BaseTradeDecision, Generator[Any, Any, BaseTradeDecision]]

	For SAOEStrategy, we need to update the self._last_step_range every time a decision is generated.
This operation should be invisible to developers, so we implement it in generate_trade_decision()
The concrete logic to generate decisions should be implemented in _generate_trade_decision().
In other words, all subclass of SAOEStrategy should overwrite _generate_trade_decision() instead of
generate_trade_decision().










	
class qlib.rl.order_execution.ProxySAOEStrategy(outer_trade_decision: BaseTradeDecision | None = None, level_infra: LevelInfrastructure | None = None, common_infra: CommonInfrastructure | None = None, **kwargs)

	Proxy strategy that uses SAOEState. It is called a ‘proxy’ strategy because it does not make any decisions
by itself. Instead, when the strategy is required to generate a decision, it will yield the environment’s
information and let the outside agents to make the decision. Please refer to _generate_trade_decision for
more details.


	
__init__(outer_trade_decision: BaseTradeDecision | None = None, level_infra: LevelInfrastructure | None = None, common_infra: CommonInfrastructure | None = None, **kwargs) → None

	
	Parameters

	policy – RL policy for generate action










	
reset(outer_trade_decision: BaseTradeDecision | None = None, **kwargs) → None

	
	reset level_infra, used to reset trade calendar, .etc


	reset common_infra, used to reset trade_account, trade_exchange, .etc


	reset outer_trade_decision, used to make split decision




NOTE:
split this function into reset and _reset will make following cases more convenient
1. Users want to initialize his strategy by overriding reset, but they don’t want to affect the _reset
called when initialization










	
class qlib.rl.order_execution.SAOEIntStrategy(policy: dict | BasePolicy, state_interpreter: dict | StateInterpreter, action_interpreter: dict | ActionInterpreter, network: dict | torch.nn.Module | None = None, outer_trade_decision: BaseTradeDecision | None = None, level_infra: LevelInfrastructure | None = None, common_infra: CommonInfrastructure | None = None, **kwargs)

	(SAOE)state based strategy with (Int)preters.


	
__init__(policy: dict | BasePolicy, state_interpreter: dict | StateInterpreter, action_interpreter: dict | ActionInterpreter, network: dict | torch.nn.Module | None = None, outer_trade_decision: BaseTradeDecision | None = None, level_infra: LevelInfrastructure | None = None, common_infra: CommonInfrastructure | None = None, **kwargs) → None

	
	Parameters

	policy – RL policy for generate action










	
reset(outer_trade_decision: BaseTradeDecision | None = None, **kwargs) → None

	
	reset level_infra, used to reset trade calendar, .etc


	reset common_infra, used to reset trade_account, trade_exchange, .etc


	reset outer_trade_decision, used to make split decision




NOTE:
split this function into reset and _reset will make following cases more convenient
1. Users want to initialize his strategy by overriding reset, but they don’t want to affect the _reset
called when initialization











Utils


	
class qlib.rl.utils.LogLevel

	Log-levels for RL training.
The behavior of handling each log level depends on the implementation of LogWriter.


	
DEBUG = 10

	If you only want to see the metric in debug mode.






	
PERIODIC = 20

	If you want to see the metric periodically.






	
INFO = 30

	Important log messages.






	
CRITICAL = 40

	LogWriter should always handle CRITICAL messages










	
class qlib.rl.utils.DataQueue(dataset: Sequence[T], repeat: int = 1, shuffle: bool = True, producer_num_workers: int = 0, queue_maxsize: int = 0)

	Main process (producer) produces data and stores them in a queue.
Sub-processes (consumers) can retrieve the data-points from the queue.
Data-points are generated via reading items from dataset.

DataQueue is ephemeral. You must create a new DataQueue
when the repeat is exhausted.

See the documents of qlib.rl.utils.FiniteVectorEnv for more background.


	Parameters

	
	dataset – The dataset to read data from. Must implement __len__ and __getitem__.


	repeat – Iterate over the data-points for how many times. Use -1 to iterate forever.


	shuffle – If shuffle is true, the items will be read in random order.


	producer_num_workers – Concurrent workers for data-loading.


	queue_maxsize – Maximum items to put into queue before it jams.








Examples

>>> data_queue = DataQueue(my_dataset)
>>> with data_queue:
...     ...





In worker:

>>> for data in data_queue:
...     print(data)






	
__init__(dataset: Sequence[T], repeat: int = 1, shuffle: bool = True, producer_num_workers: int = 0, queue_maxsize: int = 0) → None

	Initialize self.  See help(type(self)) for accurate signature.










	
class qlib.rl.utils.EnvWrapper(simulator_fn: Callable[..., Simulator[InitialStateType, StateType, ActType]], state_interpreter: StateInterpreter[StateType, ObsType], action_interpreter: ActionInterpreter[StateType, PolicyActType, ActType], seed_iterator: Optional[Iterable[InitialStateType]], reward_fn: Reward | None = None, aux_info_collector: AuxiliaryInfoCollector[StateType, Any] | None = None, logger: LogCollector | None = None)

	Qlib-based RL environment, subclassing gym.Env.
A wrapper of components, including simulator, state-interpreter, action-interpreter, reward.

This is what the framework of simulator - interpreter - policy looks like in RL training.
All the components other than policy needs to be assembled into a single object called “environment”.
The “environment” are replicated into multiple workers, and (at least in tianshou’s implementation),
one single policy (agent) plays against a batch of environments.


	Parameters

	
	simulator_fn – A callable that is the simulator factory.
When seed_iterator is present, the factory should take one argument,
that is the seed (aka initial state).
Otherwise, it should take zero argument.


	state_interpreter – State-observation converter.


	action_interpreter – Policy-simulator action converter.


	seed_iterator – An iterable of seed. With the help of qlib.rl.utils.DataQueue,
environment workers in different processes can share one seed_iterator.


	reward_fn – A callable that accepts the StateType and returns a float (at least in single-agent case).


	aux_info_collector – Collect auxiliary information. Could be useful in MARL.


	logger – Log collector that collects the logs. The collected logs are sent back to main process,
via the return value of env.step().









	
status

	Status indicator. All terms are in RL language.
It can be used if users care about data on the RL side.
Can be none when no trajectory is available.


	Type

	EnvWrapperStatus










	
__init__(simulator_fn: Callable[..., Simulator[InitialStateType, StateType, ActType]], state_interpreter: StateInterpreter[StateType, ObsType], action_interpreter: ActionInterpreter[StateType, PolicyActType, ActType], seed_iterator: Optional[Iterable[InitialStateType]], reward_fn: Reward | None = None, aux_info_collector: AuxiliaryInfoCollector[StateType, Any] | None = None, logger: LogCollector | None = None) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
reset(**kwargs) → ObsType

	Try to get a state from state queue, and init the simulator with this state.
If the queue is exhausted, generate an invalid (nan) observation.






	
step(policy_action: PolicyActType, **kwargs) → Tuple[ObsType, float, bool, qlib.rl.utils.env_wrapper.InfoDict]

	Environment step.

See the code along with comments to get a sequence of things happening here.






	
render(mode: str = 'human') → None

	Compute the render frames as specified by render_mode attribute during initialization of the environment.

The set of supported modes varies per environment. (And some
third-party environments may not support rendering at all.)
By convention, if render_mode is:


	None (default): no render is computed.


	human: render return None.
The environment is continuously rendered in the current display or terminal. Usually for human consumption.


	rgb_array: return a single frame representing the current state of the environment.
A frame is a numpy.ndarray with shape (x, y, 3) representing RGB values for an x-by-y pixel image.


	rgb_array_list: return a list of frames representing the states of the environment since the last reset.
Each frame is a numpy.ndarray with shape (x, y, 3), as with rgb_array.


	ansi: Return a strings (str) or StringIO.StringIO containing a
terminal-style text representation for each time step.
The text can include newlines and ANSI escape sequences (e.g. for colors).





Note

Make sure that your class’s metadata ‘render_modes’ key includes
the list of supported modes. It’s recommended to call super()
in implementations to use the functionality of this method.












	
class qlib.rl.utils.LogCollector(min_loglevel: int | LogLevel = <LogLevel.PERIODIC: 20>)

	Logs are first collected in each environment worker,
and then aggregated to stream at the central thread in vector env.

In LogCollector, every metric is added to a dict, which needs to be reset() at each step.
The dict is sent via the info in env.step(), and decoded by the LogWriter at vector env.

min_loglevel is for optimization purposes: to avoid too much traffic on networks / in pipe.


	
__init__(min_loglevel: int | LogLevel = <LogLevel.PERIODIC: 20>) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
reset() → None

	Clear all collected contents.






	
add_string(name: str, string: str, loglevel: int | LogLevel = <LogLevel.PERIODIC: 20>) → None

	Add a string with name into logged contents.






	
add_scalar(name: str, scalar: Any, loglevel: int | LogLevel = <LogLevel.PERIODIC: 20>) → None

	Add a scalar with name into logged contents.
Scalar will be converted into a float.






	
add_array(name: str, array: np.ndarray | pd.DataFrame | pd.Series, loglevel: int | LogLevel = <LogLevel.PERIODIC: 20>) → None

	Add an array with name into logging.






	
add_any(name: str, obj: Any, loglevel: int | LogLevel = <LogLevel.PERIODIC: 20>) → None

	Log something with any type.

As it’s an “any” object, the only LogWriter accepting it is pickle.
Therefore, pickle must be able to serialize it.










	
class qlib.rl.utils.LogWriter(loglevel: int | LogLevel = <LogLevel.PERIODIC: 20>)

	Base class for log writers, triggered at every reset and step by finite env.

What to do with a specific log depends on the implementation of subclassing LogWriter.
The general principle is that, it should handle logs above its loglevel (inclusive),
and discard logs that are not acceptable. For instance, console loggers obviously can’t handle an image.


	
episode_count = None

	Counter of episodes.






	
step_count = None

	Counter of steps.






	
active_env_ids = None

	Active environment ids in vector env.






	
__init__(loglevel: int | LogLevel = <LogLevel.PERIODIC: 20>) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
global_step = None

	Counter of steps. Won”t be cleared in clear.






	
global_episode = None

	Counter of episodes. Won”t be cleared in clear.






	
episode_lengths = None

	Map from environment id to episode length.






	
episode_rewards = None

	Map from environment id to episode total reward.






	
episode_logs = None

	Map from environment id to episode logs.






	
clear()

	Clear all the metrics for a fresh start.
To make the logger instance reusable.






	
state_dict() → dict

	Save the states of the logger to a dict.






	
load_state_dict(state_dict: dict) → None

	Load the states of current logger from a dict.






	
static aggregation(array: Sequence[Any], name: str | None = None) → Any

	Aggregation function from step-wise to episode-wise.

If it’s a sequence of float, take the mean.
Otherwise, take the first element.

If a name is specified and,


	if it’s reward, the reduction will be sum.









	
log_episode(length: int, rewards: List[float], contents: List[Dict[str, Any]]) → None

	This is triggered at the end of each trajectory.


	Parameters

	
	length – Length of this trajectory.


	rewards – A list of rewards at each step of this episode.


	contents – Logged contents for every step.













	
log_step(reward: float, contents: Dict[str, Any]) → None

	This is triggered at each step.


	Parameters

	
	reward – Reward for this step.


	contents – Logged contents for this step.













	
on_env_step(env_id: int, obs: ObsType, rew: float, done: bool, info: InfoDict) → None

	Callback for finite env, on each step.






	
on_env_reset(env_id: int, _: ObsType) → None

	Callback for finite env.

Reset episode statistics. Nothing task-specific is logged here because of
a limitation of tianshou [https://github.com/thu-ml/tianshou/issues/605].






	
on_env_all_ready() → None

	When all environments are ready to run.
Usually, loggers should be reset here.






	
on_env_all_done() → None

	All done. Time for cleanup.










	
qlib.rl.utils.vectorize_env(env_factory: Callable[..., gym.Env], env_type: FiniteEnvType, concurrency: int, logger: LogWriter | List[LogWriter]) → FiniteVectorEnv

	Helper function to create a vector env. Can be used to replace usual VectorEnv.

For example, once you wrote:

DummyVectorEnv([lambda: gym.make(task) for _ in range(env_num)])





Now you can replace it with:

finite_env_factory(lambda: gym.make(task), "dummy", env_num, my_logger)





By doing such replacement, you have two additional features enabled (compared to normal VectorEnv):


	The vector env will check for NaN observation and kill the worker when its found.
See FiniteVectorEnv for why we need this.


	A logger to explicit collect logs from environment workers.





	Parameters

	
	env_factory – Callable to instantiate one single gym.Env.
All concurrent workers will have the same env_factory.


	env_type – dummy or subproc or shmem. Corresponding to
parallelism in tianshou [https://tianshou.readthedocs.io/en/master/api/tianshou.env.html#vectorenv].


	concurrency – Concurrent environment workers.


	logger – Log writers.









Warning

Please do not use lambda expression here for env_factory as it may create incorrectly-shared instances.

Don’t do:

vectorize_env(lambda: EnvWrapper(...), ...)





Please do:

def env_factory(): ...
vectorize_env(env_factory, ...)












	
class qlib.rl.utils.ConsoleWriter(log_every_n_episode: int = 20, total_episodes: int | None = None, float_format: str = ':.4f', counter_format: str = ':4d', loglevel: int | LogLevel = <LogLevel.PERIODIC: 20>)

	Write log messages to console periodically.

It tracks an average meter for each metric, which is the average value since last clear() till now.
The display format for each metric is <name> <latest_value> (<average_value>).

Non-single-number metrics are auto skipped.


	
__init__(log_every_n_episode: int = 20, total_episodes: int | None = None, float_format: str = ':.4f', counter_format: str = ':4d', loglevel: int | LogLevel = <LogLevel.PERIODIC: 20>) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
prefix = None

	Prefix can be set via writer.prefix.






	
clear() → None

	Clear all the metrics for a fresh start.
To make the logger instance reusable.






	
log_episode(length: int, rewards: List[float], contents: List[Dict[str, Any]]) → None

	This is triggered at the end of each trajectory.


	Parameters

	
	length – Length of this trajectory.


	rewards – A list of rewards at each step of this episode.


	contents – Logged contents for every step.

















	
class qlib.rl.utils.CsvWriter(output_dir: Path, loglevel: int | LogLevel = <LogLevel.PERIODIC: 20>)

	Dump all episode metrics to a result.csv.

This is not the correct implementation. It’s only used for first iteration.


	
__init__(output_dir: Path, loglevel: int | LogLevel = <LogLevel.PERIODIC: 20>) → None

	Initialize self.  See help(type(self)) for accurate signature.






	
clear() → None

	Clear all the metrics for a fresh start.
To make the logger instance reusable.






	
log_episode(length: int, rewards: List[float], contents: List[Dict[str, Any]]) → None

	This is triggered at the end of each trajectory.


	Parameters

	
	length – Length of this trajectory.


	rewards – A list of rewards at each step of this episode.


	contents – Logged contents for every step.













	
on_env_all_done() → None

	All done. Time for cleanup.










	
class qlib.rl.utils.EnvWrapperStatus

	This is the status data structure used in EnvWrapper.
The fields here are in the semantics of RL.
For example, obs means the observation fed into policy.
action means the raw action returned by policy.






	
class qlib.rl.utils.LogBuffer(callback: Callable[[bool, bool, LogBuffer], None], loglevel: int | LogLevel = <LogLevel.PERIODIC: 20>)

	Keep all numbers in memory.

Objects that can’t be aggregated like strings, tensors, images can’t be stored in the buffer.
To persist them, please use PickleWriter.

Every time, Log buffer receives a new metric, the callback is triggered,
which is useful when tracking metrics inside a trainer.


	Parameters

	callback – A callback receiving three arguments:


	on_episode: Whether it’s called at the end of an episode


	on_collect: Whether it’s called at the end of a collect


	log_buffer: the LogBbuffer object




No return value is expected.








	
__init__(callback: Callable[[bool, bool, LogBuffer], None], loglevel: int | LogLevel = <LogLevel.PERIODIC: 20>)

	Initialize self.  See help(type(self)) for accurate signature.






	
state_dict() → dict

	Save the states of the logger to a dict.






	
load_state_dict(state_dict: dict) → None

	Load the states of current logger from a dict.






	
clear()

	Clear all the metrics for a fresh start.
To make the logger instance reusable.






	
log_episode(length: int, rewards: list[float], contents: list[dict[str, Any]]) → None

	This is triggered at the end of each trajectory.


	Parameters

	
	length – Length of this trajectory.


	rewards – A list of rewards at each step of this episode.


	contents – Logged contents for every step.













	
on_env_all_done() → None

	All done. Time for cleanup.






	
episode_metrics() → dict[str, float]

	Retrieve the numeric metrics of the latest episode.






	
collect_metrics() → dict[str, float]

	Retrieve the aggregated metrics of the latest collect.














          

      

      

    

  

    
      
          
            
  
Qlib FAQ


Qlib Frequently Asked Questions



	1. RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase…


	2. qlib.data.cache.QlibCacheException: It sees the key(…) of the redis lock has existed in your redis db now.


	3. ModuleNotFoundError: No module named ‘qlib.data._libs.rolling’


	4. BadNamespaceError: / is not a connected namespace


	5. TypeError: send() got an unexpected keyword argument ‘binary’









1. RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase…

RuntimeError:
        An attempt has been made to start a new process before the
        current process has finished its bootstrapping phase.

        This probably means that you are not using fork to start your
        child processes and you have forgotten to use the proper idiom
        in the main module:

            if __name__ == '__main__':
                freeze_support()
                ...

        The "freeze_support()" line can be omitted if the program
        is not going to be frozen to produce an executable.





This is caused by the limitation of multiprocessing under windows OS. Please refer to here [https://stackoverflow.com/a/24374798] for more info.

Solution: To select a start method you use the D.features in the if __name__ == ‘__main__’ clause of the main module. For example:

import qlib
from qlib.data import D


if __name__ == "__main__":
    qlib.init()
    instruments = ["SH600000"]
    fields = ["$close", "$change"]
    df = D.features(instruments, fields, start_time='2010-01-01', end_time='2012-12-31')
    print(df.head())







2. qlib.data.cache.QlibCacheException: It sees the key(…) of the redis lock has existed in your redis db now.

It sees the key of the redis lock has existed in your redis db now. You can use the following command to clear your redis keys and rerun your commands

$ redis-cli
> select 1
> flushdb





If the issue is not resolved, use keys * to find if multiple keys exist. If so, try using flushall to clear all the keys.


Note

qlib.config.redis_task_db defaults is 1, users can use qlib.init(redis_task_db=<other_db>) settings.



Also, feel free to post a new issue in our GitHub repository. We always check each issue carefully and try our best to solve them.



3. ModuleNotFoundError: No module named ‘qlib.data._libs.rolling’

#### Do not import qlib package in the repository directory in case of importing qlib from . without compiling #####
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "qlib/qlib/__init__.py", line 19, in init
    from .data.cache import H
File "qlib/qlib/data/__init__.py", line 8, in <module>
    from .data import (
File "qlib/qlib/data/data.py", line 20, in <module>
    from .cache import H
File "qlib/qlib/data/cache.py", line 36, in <module>
    from .ops import Operators
File "qlib/qlib/data/ops.py", line 19, in <module>
    from ._libs.rolling import rolling_slope, rolling_rsquare, rolling_resi
ModuleNotFoundError: No module named 'qlib.data._libs.rolling'






	If the error occurs when importing qlib package with PyCharm IDE, users can execute the following command in the project root folder to compile Cython files and generate executable files:


python setup.py build_ext --inplace










	If the error occurs when importing qlib package with command python , users need to change the running directory to ensure that the script does not run in the project directory.






4. BadNamespaceError: / is not a connected namespace

File "qlib_online.py", line 35, in <module>
  cal = D.calendar()
File "e:\code\python\microsoft\qlib_latest\qlib\qlib\data\data.py", line 973, in calendar
  return Cal.calendar(start_time, end_time, freq, future=future)
File "e:\code\python\microsoft\qlib_latest\qlib\qlib\data\data.py", line 798, in calendar
  self.conn.send_request(
File "e:\code\python\microsoft\qlib_latest\qlib\qlib\data\client.py", line 101, in send_request
  self.sio.emit(request_type + "_request", request_content)
File "G:\apps\miniconda\envs\qlib\lib\site-packages\python_socketio-5.3.0-py3.8.egg\socketio\client.py", line 369, in emit
  raise exceptions.BadNamespaceError(
BadNamespaceError: / is not a connected namespace.






	The version of python-socketio in qlib needs to be the same as the version of python-socketio in qlib-server:


pip install -U python-socketio==<qlib-server python-socketio version>














5. TypeError: send() got an unexpected keyword argument ‘binary’

File "qlib_online.py", line 35, in <module>
  cal = D.calendar()
File "e:\code\python\microsoft\qlib_latest\qlib\qlib\data\data.py", line 973, in calendar
  return Cal.calendar(start_time, end_time, freq, future=future)
File "e:\code\python\microsoft\qlib_latest\qlib\qlib\data\data.py", line 798, in calendar
  self.conn.send_request(
File "e:\code\python\microsoft\qlib_latest\qlib\qlib\data\client.py", line 101, in send_request
  self.sio.emit(request_type + "_request", request_content)
File "G:\apps\miniconda\envs\qlib\lib\site-packages\socketio\client.py", line 263, in emit
  self._send_packet(packet.Packet(packet.EVENT, namespace=namespace,
File "G:\apps\miniconda\envs\qlib\lib\site-packages\socketio\client.py", line 339, in _send_packet
  self.eio.send(ep, binary=binary)
TypeError: send() got an unexpected keyword argument 'binary'






	The python-engineio version needs to be compatible with the python-socketio version, reference: https://github.com/miguelgrinberg/python-socketio#version-compatibility


pip install -U python-engineio==<compatible python-socketio version>
# or
pip install -U python-socketio==3.1.2 python-engineio==3.13.2

















          

      

      

    

  

    
      
          
            
  
Changelog

Here you can see the full list of changes between each QLib release.


Version 0.1.0

This is the initial release of QLib library.



Version 0.1.1

Performance optimize. Add more features and operators.



Version 0.1.2


	Support operator syntax. Now High() - Low() is equivalent to Sub(High(), Low()).


	Add more technical indicators.






Version 0.1.3

Bug fix and add instruments filtering mechanism.



Version 0.2.0


	Redesign LocalProvider database format for performance improvement.


	Support load features as string fields.


	Add scripts for database construction.


	More operators and technical indicators.






Version 0.2.1


	Support registering user-defined Provider.


	Support use operators in string format, e.g. ['Ref($close, 1)'] is valid field format.


	Support dynamic fields in $some_field format. And existing fields like Close() may be deprecated in the future.






Version 0.2.2


	Add disk_cache for reusing features (enabled by default).


	Add qlib.contrib for experimental model construction and evaluation.






Version 0.2.3


	Add backtest module


	Decoupling the Strategy, Account, Position, Exchange from the backtest module






Version 0.2.4


	Add profit attribution module


	Add rick_control and cost_control strategies






Version 0.3.0


	Add estimator module






Version 0.3.1


	Add filter module






Version 0.3.2


	Add real price trading, if the factor field in the data set is incomplete, use adj_price trading


	Refactor handler launcher trainer code


	Support backtest configuration parameters in the configuration file


	Fix bug in position amount is 0


	Fix bug of filter module






Version 0.3.3


	Fix bug of filter module






Version 0.3.4


	Support for finetune model


	Refactor fetcher code






Version 0.3.5


	Support multi-label training, you can provide multiple label in handler. (But LightGBM doesn’t support due to the algorithm itself)


	Refactor handler code, dataset.py is no longer used, and you can deploy your own labels and features in feature_label_config


	Handler only offer DataFrame. Also, trainer and model.py only receive DataFrame


	Change split_rolling_data, we roll the data on market calendar now, not on normal date


	Move some date config from handler to trainer






Version 0.4.0


	Add data package that holds all data-related codes


	Reform the data provider structure


	Create a server for data centralized management qlib-server [https://amc-msra.visualstudio.com/trading-algo/_git/qlib-server]


	Add a ClientProvider to work with server


	Add a pluggable cache mechanism


	Add a recursive backtracking algorithm to inspect the furthest reference date for an expression





Note

The D.instruments function does not support start_time, end_time, and as_list parameters, if you want to get the results of previous versions of D.instruments, you can do this:

>>> from qlib.data import D
>>> instruments = D.instruments(market='csi500')
>>> D.list_instruments(instruments=instruments, start_time='2015-01-01', end_time='2016-02-15', as_list=True)









Version 0.4.1


	Add support Windows


	Fix instruments type bug


	Fix features is empty bug(It will cause failure in updating)


	Fix cache lock and update bug


	Fix use the same cache for the same field (the original space will add a new cache)


	Change “logger handler” from config


	Change model load support 0.4.0 later


	The default value of the method parameter of risk_analysis function is changed from ci to si






Version 0.4.2


	Refactor DataHandler


	Add Alpha360 DataHandler






Version 0.4.3


	Implementing Online Inference and Trading Framework


	Refactoring The interfaces of backtest and strategy module.






Version 0.4.4


	Optimize cache generation performance


	Add report module


	Fix bug when using ServerDatasetCache offline.


	In the previous version of long_short_backtest, there is a case of np.nan in long_short. The current version 0.4.4 has been fixed, so long_short_backtest will be different from the previous version.


	In the 0.4.2 version of risk_analysis function, N is 250, and N is 252 from 0.4.3, so 0.4.2 is 0.002122 smaller than the 0.4.3 the backtest result is slightly different between 0.4.2 and 0.4.3.


	
	refactor the argument of backtest function.

	
	NOTE:
- The default arguments of topk margin strategy is changed. Please pass the arguments explicitly if you want to get the same backtest result as previous version.
- The TopkWeightStrategy is changed slightly. It will try to sell the stocks more than topk.  (The backtest result of TopkAmountStrategy remains the same)










	The margin ratio mechanism is supported in the Topk Margin strategies.






Version 0.4.5


	
	Add multi-kernel implementation for both client and server.

	
	Support a new way to load data from client which skips dataset cache.


	Change the default dataset method from single kernel implementation to multi kernel implementation.










	Accelerate the high frequency data reading by optimizing the relative modules.


	Support a new method to write config file by using dict.






Version 0.4.6


	
	Some bugs are fixed

	
	The default config in Version 0.4.5 is not friendly to daily frequency data.


	Backtest error in TopkWeightStrategy when WithInteract=True.














Version 0.5.0


	
	First opensource version

	
	Refine the docs, code


	Add baselines


	public data crawler














Version 0.8.0


	
	The backtest is greatly refactored.

	
	Nested decision execution framework is supported


	
	There are lots of changes for daily trading, it is hard to list all of them. But a few important changes could be noticed

	
	
	The trading limitation is more accurate;

	
	In previous version [https://github.com/microsoft/qlib/blob/v0.7.2/qlib/contrib/backtest/exchange.py#L160], longing and shorting actions share the same action.


	In current version [https://github.com/microsoft/qlib/blob/7c31012b507a3823117bddcc693fc64899460b2a/qlib/backtest/exchange.py#L304], the trading limitation is different between logging and shorting action.










	
	The constant is different when calculating annualized metrics.

	
	Current version [https://github.com/microsoft/qlib/blob/7c31012b507a3823117bddcc693fc64899460b2a/qlib/contrib/evaluate.py#L42] uses more accurate constant than previous version [https://github.com/microsoft/qlib/blob/v0.7.2/qlib/contrib/evaluate.py#L22]










	A new version [https://github.com/microsoft/qlib/blob/7c31012b507a3823117bddcc693fc64899460b2a/qlib/tests/data.py#L17] of data is released. Due to the unstability of Yahoo data source, the data may be different after downloading data again.


	Users could check out the backtesting results between  Current version [https://github.com/microsoft/qlib/tree/7c31012b507a3823117bddcc693fc64899460b2a/examples/benchmarks] and previous version [https://github.com/microsoft/qlib/tree/v0.7.2/examples/benchmarks]






















Other Versions

Please refer to Github release Notes [https://github.com/microsoft/qlib/releases]





          

      

      

    

  

    
      
          
            

   Python Module Index


   
   q
   


   
     		 	

     		
       q	

     
       	[image: -]
       	
       qlib	
       

     
       	
       	   
       qlib.contrib.evaluate	
       

     
       	
       	   
       qlib.contrib.report.analysis_model.analysis_model_performance	
       

     
       	
       	   
       qlib.contrib.report.analysis_position.cumulative_return	
       

     
       	
       	   
       qlib.contrib.report.analysis_position.rank_label	
       

     
       	
       	   
       qlib.contrib.report.analysis_position.report	
       

     
       	
       	   
       qlib.contrib.report.analysis_position.risk_analysis	
       

     
       	
       	   
       qlib.contrib.report.analysis_position.score_ic	
       

     
       	
       	   
       qlib.contrib.strategy	
       

     
       	
       	   
       qlib.data.base	
       

     
       	
       	   
       qlib.data.data	
       

     
       	
       	   
       qlib.data.dataset.__init__	
       

     
       	
       	   
       qlib.data.dataset.handler	
       

     
       	
       	   
       qlib.data.dataset.loader	
       

     
       	
       	   
       qlib.data.dataset.processor	
       

     
       	
       	   
       qlib.data.filter	
       

     
       	
       	   
       qlib.data.ops	
       

     
       	
       	   
       qlib.model.base	
       

     
       	
       	   
       qlib.model.ens.ensemble	
       

     
       	
       	   
       qlib.model.ens.group	
       

     
       	
       	   
       qlib.model.trainer	
       

     
       	
       	   
       qlib.rl	
       

     
       	
       	   
       qlib.rl.order_execution	
       

     
       	
       	   
       qlib.rl.strategy	
       

     
       	
       	   
       qlib.rl.trainer	
       

     
       	
       	   
       qlib.rl.utils	
       

     
       	
       	   
       qlib.utils.serial	
       

     
       	
       	   
       qlib.workflow.online.manager	
       

     
       	
       	   
       qlib.workflow.online.strategy	
       

     
       	
       	   
       qlib.workflow.online.update	
       

     
       	
       	   
       qlib.workflow.online.utils	
       

     
       	
       	   
       qlib.workflow.record_temp	
       

     
       	
       	   
       qlib.workflow.task.collect	
       

     
       	
       	   
       qlib.workflow.task.gen	
       

     
       	
       	   
       qlib.workflow.task.manage	
       

     
       	
       	   
       qlib.workflow.task.utils	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z
 


_


  	
      	__init__() (qlib.contrib.strategy.EnhancedIndexingStrategy method)

      
        	(qlib.contrib.strategy.SBBStrategyEMA method)


        	(qlib.contrib.strategy.SoftTopkStrategy method)


        	(qlib.contrib.strategy.TopkDropoutStrategy method)


        	(qlib.contrib.strategy.WeightStrategyBase method)


        	(qlib.data.base.Feature method)


        	(qlib.data.cache.DiskDatasetCache method)


        	(qlib.data.cache.DiskDatasetCache.IndexManager method)


        	(qlib.data.cache.DiskExpressionCache method)


        	(qlib.data.cache.MemCache method)


        	(qlib.data.cache.MemCacheUnit method)


        	(qlib.data.data.ClientCalendarProvider method)


        	(qlib.data.data.ClientDatasetProvider method)


        	(qlib.data.data.ClientInstrumentProvider method)


        	(qlib.data.data.ClientProvider method)


        	(qlib.data.data.ExpressionProvider method)


        	(qlib.data.data.LocalCalendarProvider method)


        	(qlib.data.data.LocalDatasetProvider method)


        	(qlib.data.data.LocalExpressionProvider method)


        	(qlib.data.data.LocalFeatureProvider method)


        	(qlib.data.data.LocalInstrumentProvider method)


        	(qlib.data.dataset.__init__.Dataset method)


        	(qlib.data.dataset.__init__.DatasetH method)


        	(qlib.data.dataset.handler.DataHandler method)


        	(qlib.data.dataset.handler.DataHandlerLP method)


        	(qlib.data.dataset.loader.DLWParser method)


        	(qlib.data.dataset.loader.DataLoaderDH method)


        	(qlib.data.dataset.loader.QlibDataLoader method)


        	(qlib.data.dataset.loader.StaticDataLoader method)


        	(qlib.data.dataset.processor.CSRankNorm method)


        	(qlib.data.dataset.processor.CSZFillna method)


        	(qlib.data.dataset.processor.CSZScoreNorm method)


        	(qlib.data.dataset.processor.DropCol method)


        	(qlib.data.dataset.processor.DropnaLabel method)


        	(qlib.data.dataset.processor.DropnaProcessor method)


        	(qlib.data.dataset.processor.Fillna method)


        	(qlib.data.dataset.processor.FilterCol method)


        	(qlib.data.dataset.processor.MinMaxNorm method)


        	(qlib.data.dataset.processor.RobustZScoreNorm method)


        	(qlib.data.dataset.processor.TimeRangeFlt method)


        	(qlib.data.dataset.processor.ZScoreNorm method)


        	(qlib.data.filter.BaseDFilter method)


        	(qlib.data.filter.ExpressionDFilter method)


        	(qlib.data.filter.NameDFilter method)


        	(qlib.data.filter.SeriesDFilter method)


        	(qlib.data.ops.Abs method)


        	(qlib.data.ops.Add method)


        	(qlib.data.ops.And method)


        	(qlib.data.ops.ChangeInstrument method)


        	(qlib.data.ops.Corr method)


        	(qlib.data.ops.Count method)


        	(qlib.data.ops.Cov method)


        	(qlib.data.ops.Delta method)


        	(qlib.data.ops.Div method)


        	(qlib.data.ops.EMA method)


        	(qlib.data.ops.ElemOperator method)


        	(qlib.data.ops.Eq method)


        	(qlib.data.ops.Ge method)


        	(qlib.data.ops.Greater method)


        	(qlib.data.ops.Gt method)


        	(qlib.data.ops.IdxMax method)


        	(qlib.data.ops.IdxMin method)


        	(qlib.data.ops.If method)


        	(qlib.data.ops.Kurt method)


        	(qlib.data.ops.Le method)


        	(qlib.data.ops.Less method)


        	(qlib.data.ops.Log method)


        	(qlib.data.ops.Lt method)


        	(qlib.data.ops.Mad method)


        	(qlib.data.ops.Mask method)


        	(qlib.data.ops.Max method)


        	(qlib.data.ops.Mean method)


        	(qlib.data.ops.Med method)


        	(qlib.data.ops.Min method)


        	(qlib.data.ops.Mul method)


        	(qlib.data.ops.Ne method)


        	(qlib.data.ops.Not method)


        	(qlib.data.ops.NpElemOperator method)


        	(qlib.data.ops.NpPairOperator method)


        	(qlib.data.ops.OpsWrapper method)


        	(qlib.data.ops.Or method)


        	(qlib.data.ops.PairOperator method)


        	(qlib.data.ops.PairRolling method)


        	(qlib.data.ops.Power method)


        	(qlib.data.ops.Quantile method)


        	(qlib.data.ops.Rank method)


        	(qlib.data.ops.Ref method)


        	(qlib.data.ops.Resi method)


        	(qlib.data.ops.Rolling method)


        	(qlib.data.ops.Rsquare method)


        	(qlib.data.ops.Sign method)


        	(qlib.data.ops.Skew method)


        	(qlib.data.ops.Slope method)


        	(qlib.data.ops.Std method)


        	(qlib.data.ops.Sub method)


        	(qlib.data.ops.Sum method)


        	(qlib.data.ops.TResample method)


        	(qlib.data.ops.Var method)


        	(qlib.data.ops.WMA method)


        	(qlib.data.storage.file_storage.FileCalendarStorage method)


        	(qlib.data.storage.file_storage.FileFeatureStorage method)


        	(qlib.data.storage.file_storage.FileInstrumentStorage method)


        	(qlib.data.storage.storage.CalendarStorage method)


        	(qlib.data.storage.storage.FeatureStorage method)


        	(qlib.data.storage.storage.InstrumentStorage method)


        	(qlib.model.ens.group.Group method)


        	(qlib.model.ens.group.RollingGroup method)


        	(qlib.model.meta.dataset.MetaTaskDataset method)


        	(qlib.model.meta.task.MetaTask method)


        	(qlib.model.trainer.DelayTrainerR method)


        	(qlib.model.trainer.DelayTrainerRM method)


        	(qlib.model.trainer.Trainer method)


        	(qlib.model.trainer.TrainerR method)


        	(qlib.model.trainer.TrainerRM method)


        	(qlib.rl.RewardCombination method)


        	(qlib.rl.Simulator method)


        	(qlib.rl.order_execution.AllOne method)


        	(qlib.rl.order_execution.CategoricalActionInterpreter method)


        	(qlib.rl.order_execution.CurrentStepStateInterpreter method)


        	(qlib.rl.order_execution.FullHistoryStateInterpreter method)


        	(qlib.rl.order_execution.PAPenaltyReward method)


        	(qlib.rl.order_execution.PPO method)


        	(qlib.rl.order_execution.ProxySAOEStrategy method)


        	(qlib.rl.order_execution.Recurrent method)


        	(qlib.rl.order_execution.SAOEIntStrategy method)


        	(qlib.rl.order_execution.SAOEStateAdapter method)


        	(qlib.rl.order_execution.SAOEStrategy method)


        	(qlib.rl.order_execution.SingleAssetOrderExecutionSimple method)


        	(qlib.rl.strategy.SingleOrderStrategy method)


        	(qlib.rl.trainer.Checkpoint method)


        	(qlib.rl.trainer.EarlyStopping method)


        	(qlib.rl.trainer.MetricsWriter method)


        	(qlib.rl.trainer.Trainer method)


        	(qlib.rl.trainer.TrainingVessel method)


        	(qlib.rl.utils.ConsoleWriter method)


        	(qlib.rl.utils.CsvWriter method)


        	(qlib.rl.utils.DataQueue method)


        	(qlib.rl.utils.EnvWrapper method)


        	(qlib.rl.utils.LogBuffer method)


        	(qlib.rl.utils.LogCollector method)


        	(qlib.rl.utils.LogWriter method)


        	(qlib.utils.serial.Serializable method)


        	(qlib.workflow.__init__.QlibRecorder method)


        	(qlib.workflow.exp.Experiment method)


        	(qlib.workflow.expm.ExpManager method)


        	(qlib.workflow.online.manager.OnlineManager method)


        	(qlib.workflow.online.strategy.OnlineStrategy method)


        	(qlib.workflow.online.strategy.RollingStrategy method)


        	(qlib.workflow.online.update.DSBasedUpdater method)


        	(qlib.workflow.online.update.LabelUpdater method)


        	(qlib.workflow.online.update.RMDLoader method)


        	(qlib.workflow.online.update.RecordUpdater method)


        	(qlib.workflow.online.utils.OnlineTool method)


        	(qlib.workflow.online.utils.OnlineToolR method)


        	(qlib.workflow.record_temp.ACRecordTemp method)


        	(qlib.workflow.record_temp.HFSignalRecord method)


        	(qlib.workflow.record_temp.PortAnaRecord method)


        	(qlib.workflow.record_temp.RecordTemp method)


        	(qlib.workflow.record_temp.SigAnaRecord method)


        	(qlib.workflow.record_temp.SignalRecord method)


        	(qlib.workflow.recorder.Recorder method)


        	(qlib.workflow.task.collect.Collector method)


        	(qlib.workflow.task.collect.MergeCollector method)


        	(qlib.workflow.task.collect.RecorderCollector method)


        	(qlib.workflow.task.gen.MultiHorizonGenBase method)


        	(qlib.workflow.task.gen.RollingGen method)


        	(qlib.workflow.task.manage.TaskManager method)


        	(qlib.workflow.task.utils.TimeAdjuster method)


      


  





A


  	
      	Abs (class in qlib.data.ops)


      	ACRecordTemp (class in qlib.workflow.record_temp)


      	ActionInterpreter (class in qlib.rl)


      	active_env_ids (qlib.rl.utils.LogWriter attribute)


      	Add (class in qlib.data.ops)


      	add_any() (qlib.rl.utils.LogCollector method)


      	add_array() (qlib.rl.utils.LogCollector method)


      	add_scalar() (qlib.rl.utils.LogCollector method)


      	add_strategy() (qlib.workflow.online.manager.OnlineManager method)


  

  	
      	add_string() (qlib.rl.utils.LogCollector method)


      	aggregation() (qlib.rl.utils.LogWriter static method)


      	align_idx() (qlib.workflow.task.utils.TimeAdjuster method)


      	align_seg() (qlib.workflow.task.utils.TimeAdjuster method)


      	align_time() (qlib.workflow.task.utils.TimeAdjuster method)


      	AllOne (class in qlib.rl.order_execution)


      	amount (qlib.rl.order_execution.SAOEMetrics attribute)


      	And (class in qlib.data.ops)


      	AverageEnsemble (class in qlib.model.ens.ensemble)


  





B


  	
      	backtest() (in module qlib.rl.trainer)


      	backtest_daily() (in module qlib.contrib.evaluate)


      	backtest_data (qlib.rl.order_execution.SAOEState attribute)


      	BaseDFilter (class in qlib.data.filter)


  

  	
      	BaseModel (class in qlib.model.base)


      	BaseProvider (class in qlib.data.data)


      	BaseProviderWrapper (in module qlib.data.data)


      	BaseStorage (class in qlib.data.storage.storage)


      	begin_task_train() (in module qlib.model.trainer)


  





C


  	
      	cache_to_origin_data() (qlib.data.cache.DatasetCache static method)


      	cache_walker() (qlib.data.data.LocalDatasetProvider static method)


      	cal_interval() (qlib.workflow.task.utils.TimeAdjuster method)


      	calendar() (qlib.data.data.CalendarProvider method)

      
        	(qlib.data.data.ClientCalendarProvider method)


      


      	CalendarProvider (class in qlib.data.data)


      	CalendarProviderWrapper (in module qlib.data.data)


      	CalendarStorage (class in qlib.data.storage.storage)


      	cast() (qlib.data.dataset.handler.DataHandlerLP class method)


      	CategoricalActionInterpreter (class in qlib.rl.order_execution)


      	ChangeInstrument (class in qlib.data.ops)


      	check() (qlib.data.storage.file_storage.FileStorageMixin method)

      
        	(qlib.workflow.record_temp.RecordTemp method)


      


      	Checkpoint (class in qlib.rl.trainer)


      	clear() (qlib.rl.utils.ConsoleWriter method)

      
        	(qlib.rl.utils.CsvWriter method)


        	(qlib.rl.utils.LogBuffer method)


        	(qlib.rl.utils.LogWriter method)


      


      	ClientCalendarProvider (class in qlib.data.data)


      	ClientDatasetProvider (class in qlib.data.data)


      	ClientInstrumentProvider (class in qlib.data.data)


      	ClientProvider (class in qlib.data.data)


      	collect() (qlib.workflow.task.collect.Collector method)

      
        	(qlib.workflow.task.collect.MergeCollector method)


        	(qlib.workflow.task.collect.RecorderCollector method)


      


  

  	
      	collect_metrics() (qlib.rl.utils.LogBuffer method)


      	Collector (class in qlib.workflow.task.collect)


      	commit_task_res() (qlib.workflow.task.manage.TaskManager method)


      	config() (qlib.data.dataset.__init__.Dataset method)

      
        	(qlib.data.dataset.__init__.DatasetH method)


        	(qlib.data.dataset.handler.DataHandler method)


        	(qlib.data.dataset.handler.DataHandlerLP method)


        	(qlib.data.dataset.processor.Processor method)


        	(qlib.utils.serial.Serializable method)


      


      	ConsoleWriter (class in qlib.rl.utils)


      	Corr (class in qlib.data.ops)


      	Count (class in qlib.data.ops)


      	Cov (class in qlib.data.ops)


      	create_exp() (qlib.workflow.expm.ExpManager method)


      	create_recorder() (qlib.workflow.exp.Experiment method)


      	create_task() (qlib.workflow.task.manage.TaskManager method)


      	CRITICAL (qlib.rl.utils.LogLevel attribute)


      	CSRankNorm (class in qlib.data.dataset.processor)


      	CsvWriter (class in qlib.rl.utils)


      	CSZFillna (class in qlib.data.dataset.processor)


      	CSZScoreNorm (class in qlib.data.dataset.processor)


      	cumulative_return_graph() (in module qlib.contrib.report.analysis_position.cumulative_return)


      	cur_step (qlib.rl.order_execution.SAOEState attribute)


      	cur_time (qlib.rl.order_execution.SAOEState attribute)


      	current_iter (qlib.rl.trainer.Trainer attribute)


      	CurrentStepStateInterpreter (class in qlib.rl.order_execution)


  





D


  	
      	data (qlib.data.storage.file_storage.FileCalendarStorage attribute)

      
        	(qlib.data.storage.file_storage.FileFeatureStorage attribute)


        	(qlib.data.storage.file_storage.FileInstrumentStorage attribute)


        	(qlib.data.storage.storage.CalendarStorage attribute)


        	(qlib.data.storage.storage.FeatureStorage attribute)


        	(qlib.data.storage.storage.InstrumentStorage attribute)


      


      	DataHandler (class in qlib.data.dataset.handler)


      	DataHandlerLP (class in qlib.data.dataset.handler)


      	DataLoader (class in qlib.data.dataset.loader)


      	DataLoaderDH (class in qlib.data.dataset.loader)


      	DataQueue (class in qlib.rl.utils)


      	Dataset (class in qlib.data.dataset.__init__)


      	dataset() (qlib.data.cache.DatasetCache method)

      
        	(qlib.data.data.ClientDatasetProvider method)


        	(qlib.data.data.DatasetProvider method)


        	(qlib.data.data.LocalDatasetProvider method)


      


      	dataset_processor() (qlib.data.data.DatasetProvider static method)


      	DatasetCache (class in qlib.data.cache)


      	DatasetH (class in qlib.data.dataset.__init__)


      	DatasetProvider (class in qlib.data.data)


      	DatasetProviderWrapper (in module qlib.data.data)


      	datetime (qlib.rl.order_execution.SAOEMetrics attribute)


      	deal_amount (qlib.rl.order_execution.SAOEMetrics attribute)


      	DEBUG (qlib.rl.utils.LogLevel attribute)


      	default_uri (qlib.workflow.expm.ExpManager attribute)


      	delay_prepare() (qlib.workflow.online.manager.OnlineManager method)


  

  	
      	DelayTrainerR (class in qlib.model.trainer)


      	DelayTrainerRM (class in qlib.model.trainer)


      	delete_exp() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.expm.ExpManager method)


      


      	delete_recorder() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.exp.Experiment method)


      


      	delete_tags() (qlib.workflow.recorder.Recorder method)


      	Delta (class in qlib.data.ops)


      	depend_cls (qlib.workflow.record_temp.HFSignalRecord attribute)

      
        	(qlib.workflow.record_temp.PortAnaRecord attribute)


        	(qlib.workflow.record_temp.SigAnaRecord attribute)


      


      	direction (qlib.rl.order_execution.SAOEMetrics attribute)


      	DiskDatasetCache (class in qlib.data.cache)


      	DiskDatasetCache.IndexManager (class in qlib.data.cache)


      	DiskExpressionCache (class in qlib.data.cache)


      	Div (class in qlib.data.ops)


      	DLWParser (class in qlib.data.dataset.loader)


      	done() (qlib.rl.order_execution.SingleAssetOrderExecutionSimple method)

      
        	(qlib.rl.Simulator method)


      


      	download_artifact() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.recorder.Recorder method)


      


      	DropCol (class in qlib.data.dataset.processor)


      	DropnaLabel (class in qlib.data.dataset.processor)


      	DropnaProcessor (class in qlib.data.dataset.processor)


      	DSBasedUpdater (class in qlib.workflow.online.update)


      	dump_all (qlib.utils.serial.Serializable attribute)


  





E


  	
      	EarlyStopping (class in qlib.rl.trainer)


      	ElemOperator (class in qlib.data.ops)


      	EMA (class in qlib.data.ops)


      	end() (qlib.workflow.exp.Experiment method)


      	end_exp() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.expm.ExpManager method)


      


      	end_index (qlib.data.storage.file_storage.FileFeatureStorage attribute)

      
        	(qlib.data.storage.storage.FeatureStorage attribute)


      


      	end_run() (qlib.workflow.recorder.Recorder method)


      	end_task_train() (in module qlib.model.trainer)


      	end_train() (qlib.model.trainer.DelayTrainerR method)

      
        	(qlib.model.trainer.DelayTrainerRM method)


        	(qlib.model.trainer.Trainer method)


        	(qlib.model.trainer.TrainerR method)


        	(qlib.model.trainer.TrainerRM method)


      


      	EnhancedIndexingStrategy (class in qlib.contrib.strategy)


      	Ensemble (class in qlib.model.ens.ensemble)


      	env (qlib.rl.Simulator attribute)


  

  	
      	EnvWrapper (class in qlib.rl.utils)


      	EnvWrapperStatus (class in qlib.rl.utils)


      	episode_count (qlib.rl.utils.LogWriter attribute)


      	episode_lengths (qlib.rl.utils.LogWriter attribute)


      	episode_logs (qlib.rl.utils.LogWriter attribute)


      	episode_metrics() (qlib.rl.utils.LogBuffer method)


      	episode_rewards (qlib.rl.utils.LogWriter attribute)


      	Eq (class in qlib.data.ops)


      	Experiment (class in qlib.workflow.exp)


      	ExpManager (class in qlib.workflow.expm)


      	Expression (class in qlib.data.base)


      	expression() (qlib.data.cache.ExpressionCache method)

      
        	(qlib.data.data.ExpressionProvider method)


        	(qlib.data.data.LocalExpressionProvider method)


      


      	ExpressionCache (class in qlib.data.cache)


      	ExpressionDFilter (class in qlib.data.filter)


      	ExpressionOps (class in qlib.data.base)


      	ExpressionProvider (class in qlib.data.data)


      	ExpressionProviderWrapper (in module qlib.data.data)


  





F


  	
      	Feature (class in qlib.data.base)


      	feature() (qlib.data.data.FeatureProvider method)

      
        	(qlib.data.data.LocalFeatureProvider method)


      


      	FeatureProvider (class in qlib.data.data)


      	FeatureProviderWrapper (in module qlib.data.data)


      	features() (qlib.data.data.BaseProvider method)


      	features_uri() (qlib.data.data.LocalProvider method)


      	FeatureStorage (class in qlib.data.storage.storage)


      	fetch() (qlib.data.dataset.handler.DataHandler method)

      
        	(qlib.data.dataset.handler.DataHandlerLP method)


      


      	fetch_task() (qlib.workflow.task.manage.TaskManager method)


      	ffr (qlib.rl.order_execution.SAOEMetrics attribute)


      	FileCalendarStorage (class in qlib.data.storage.file_storage)


      	FileFeatureStorage (class in qlib.data.storage.file_storage)


      	FileInstrumentStorage (class in qlib.data.storage.file_storage)


      	FileStorageMixin (class in qlib.data.storage.file_storage)


      	Fillna (class in qlib.data.dataset.processor)


      	filter_main() (qlib.data.filter.SeriesDFilter method)


      	FilterCol (class in qlib.data.dataset.processor)


      	finetune() (qlib.model.base.ModelFT method)


  

  	
      	first_tasks() (qlib.workflow.online.strategy.OnlineStrategy method)

      
        	(qlib.workflow.online.strategy.RollingStrategy method)


      


      	first_train() (qlib.workflow.online.manager.OnlineManager method)


      	fit() (qlib.data.dataset.handler.DataHandlerLP method)

      
        	(qlib.data.dataset.processor.MinMaxNorm method)


        	(qlib.data.dataset.processor.Processor method)


        	(qlib.data.dataset.processor.RobustZScoreNorm method)


        	(qlib.data.dataset.processor.ZScoreNorm method)


        	(qlib.model.base.Model method)


        	(qlib.model.meta.model.MetaGuideModel method)


        	(qlib.model.meta.model.MetaModel method)


        	(qlib.model.meta.model.MetaTaskModel method)


        	(qlib.rl.trainer.Trainer method)


      


      	fit_process_data() (qlib.data.dataset.handler.DataHandlerLP method)


      	forward() (qlib.rl.order_execution.AllOne method)

      
        	(qlib.rl.order_execution.Recurrent method)


      


      	from_config() (qlib.data.filter.BaseDFilter static method)

      
        	(qlib.data.filter.ExpressionDFilter static method)


        	(qlib.data.filter.NameDFilter static method)


      


      	from_df() (qlib.data.dataset.handler.DataHandlerLP class method)


      	FullHistoryStateInterpreter (class in qlib.rl.order_execution)


  





G


  	
      	Ge (class in qlib.data.ops)


      	gen_dataset_cache() (qlib.data.cache.DiskDatasetCache method)


      	gen_expression_cache() (qlib.data.cache.DiskExpressionCache method)


      	gen_following_tasks() (qlib.workflow.task.gen.RollingGen method)


      	general_dump() (qlib.utils.serial.Serializable static method)


      	generate() (qlib.workflow.record_temp.ACRecordTemp method)

      
        	(qlib.workflow.record_temp.HFSignalRecord method)


        	(qlib.workflow.record_temp.RecordTemp method)


        	(qlib.workflow.record_temp.SignalRecord method)


        	(qlib.workflow.task.gen.MultiHorizonGenBase method)


        	(qlib.workflow.task.gen.RollingGen method)


        	(qlib.workflow.task.gen.TaskGen method)


      


      	generate_metrics_after_done() (qlib.rl.order_execution.SAOEStateAdapter method)


      	generate_target_weight_position() (qlib.contrib.strategy.EnhancedIndexingStrategy method)

      
        	(qlib.contrib.strategy.SoftTopkStrategy method)


        	(qlib.contrib.strategy.WeightStrategyBase method)


      


      	generate_trade_decision() (qlib.contrib.strategy.SBBStrategyBase method)

      
        	(qlib.contrib.strategy.TWAPStrategy method)


        	(qlib.contrib.strategy.TopkDropoutStrategy method)


        	(qlib.contrib.strategy.WeightStrategyBase method)


        	(qlib.rl.order_execution.SAOEStrategy method)


        	(qlib.rl.strategy.SingleOrderStrategy method)


      


      	get() (qlib.workflow.task.utils.TimeAdjuster method)


      	get_backend() (qlib.utils.serial.Serializable class method)


      	get_collector() (qlib.workflow.online.manager.OnlineManager method)

      
        	(qlib.workflow.online.strategy.OnlineStrategy method)


        	(qlib.workflow.online.strategy.RollingStrategy method)


      


      	get_cols() (qlib.data.dataset.handler.DataHandler method)

      
        	(qlib.data.dataset.handler.DataHandlerLP method)


      


      	get_column_names() (qlib.data.data.DatasetProvider static method)


      	get_dataset() (qlib.workflow.online.update.RMDLoader method)


      	get_exp() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.expm.ExpManager method)


      


      	get_exp_name() (qlib.workflow.task.collect.RecorderCollector method)


      	get_extended_window_size() (qlib.data.base.Expression method)

      
        	(qlib.data.base.Feature method)


        	(qlib.data.ops.ElemOperator method)


        	(qlib.data.ops.If method)


        	(qlib.data.ops.PairOperator method)


        	(qlib.data.ops.PairRolling method)


        	(qlib.data.ops.Ref method)


        	(qlib.data.ops.Rolling method)


      


  

  	
      	get_group_columns() (in module qlib.data.dataset.processor)


      	get_instruments_d() (qlib.data.data.DatasetProvider static method)


      	get_longest_back_rolling() (qlib.data.base.Expression method)

      
        	(qlib.data.base.Feature method)


        	(qlib.data.ops.ElemOperator method)


        	(qlib.data.ops.If method)


        	(qlib.data.ops.PairOperator method)


        	(qlib.data.ops.PairRolling method)


        	(qlib.data.ops.Ref method)


        	(qlib.data.ops.Rolling method)


      


      	get_meta_input() (qlib.model.meta.task.MetaTask method)


      	get_mongodb() (in module qlib.workflow.task.utils)


      	get_online_tag() (qlib.workflow.online.utils.OnlineTool method)

      
        	(qlib.workflow.online.utils.OnlineToolR method)


      


      	get_range_iterator() (qlib.data.dataset.handler.DataHandler method)


      	get_range_selector() (qlib.data.dataset.handler.DataHandler method)


      	get_recorder() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.exp.Experiment method)


      


      	get_risk_degree() (qlib.contrib.strategy.SoftTopkStrategy method)


      	get_signals() (qlib.workflow.online.manager.OnlineManager method)


      	get_update_data() (qlib.workflow.online.update.DSBasedUpdater method)

      
        	(qlib.workflow.online.update.LabelUpdater method)


        	(qlib.workflow.online.update.PredUpdater method)


      


      	get_uri() (qlib.workflow.__init__.QlibRecorder method)


      	global_episode (qlib.rl.utils.LogWriter attribute)


      	global_step (qlib.rl.utils.LogWriter attribute)


      	Greater (class in qlib.data.ops)


      	Group (class in qlib.model.ens.group)


      	group() (qlib.model.ens.group.Group method)

      
        	(qlib.model.ens.group.RollingGroup method)


      


      	Gt (class in qlib.data.ops)


  





H


  	
      	handler_mod() (in module qlib.workflow.task.gen)


      	has_worker() (qlib.model.trainer.DelayTrainerRM method)

      
        	(qlib.model.trainer.Trainer method)


        	(qlib.model.trainer.TrainerRM method)


      


      	HashStockFormat (class in qlib.data.dataset.processor)


  

  	
      	HFSignalRecord (class in qlib.workflow.record_temp)


      	history_exec (qlib.rl.order_execution.SAOEState attribute)

      
        	(qlib.rl.order_execution.SingleAssetOrderExecutionSimple attribute)


      


      	history_steps (qlib.rl.order_execution.SAOEState attribute)

      
        	(qlib.rl.order_execution.SingleAssetOrderExecutionSimple attribute)


      


  





I


  	
      	ic_figure() (in module qlib.contrib.report.analysis_model.analysis_model_performance)


      	IdxMax (class in qlib.data.ops)


      	IdxMin (class in qlib.data.ops)


      	If (class in qlib.data.ops)


      	index() (qlib.data.storage.file_storage.FileCalendarStorage method)

      
        	(qlib.data.storage.storage.CalendarStorage method)


      


      	indicator_analysis() (in module qlib.contrib.evaluate)


      	inference() (qlib.model.meta.model.MetaGuideModel method)

      
        	(qlib.model.meta.model.MetaModel method)


        	(qlib.model.meta.model.MetaTaskModel method)


      


      	INFO (qlib.rl.utils.LogLevel attribute)


      	initialize() (qlib.rl.trainer.Trainer method)


      	initialize_iter() (qlib.rl.trainer.Trainer method)


      	inner_amount (qlib.rl.order_execution.SAOEMetrics attribute)


      	insert_task() (qlib.workflow.task.manage.TaskManager method)


  

  	
      	insert_task_def() (qlib.workflow.task.manage.TaskManager method)


      	inst_calculator() (qlib.data.data.DatasetProvider static method)


      	InstrumentProvider (class in qlib.data.data)


      	InstrumentProviderWrapper (in module qlib.data.data)


      	instruments() (qlib.data.data.InstrumentProvider static method)


      	InstrumentStorage (class in qlib.data.storage.storage)


      	interpret() (qlib.rl.ActionInterpreter method)

      
        	(qlib.rl.StateInterpreter method)


        	(qlib.rl.order_execution.CategoricalActionInterpreter method)


        	(qlib.rl.order_execution.CurrentStepStateInterpreter method)


        	(qlib.rl.order_execution.FullHistoryStateInterpreter method)


        	(qlib.rl.order_execution.TwapRelativeActionInterpreter method)


      


      	Interpreter (class in qlib.rl)


      	is_delay() (qlib.model.trainer.Trainer method)


      	is_for_infer() (qlib.data.dataset.processor.DropnaLabel method)

      
        	(qlib.data.dataset.processor.Processor method)


      


  





K


  	
      	Kurt (class in qlib.data.ops)


  





L


  	
      	LabelUpdater (class in qlib.workflow.online.update)


      	Le (class in qlib.data.ops)


      	Less (class in qlib.data.ops)


      	limited (qlib.data.cache.MemCacheUnit attribute)


      	list() (qlib.workflow.record_temp.HFSignalRecord method)

      
        	(qlib.workflow.record_temp.PortAnaRecord method)


        	(qlib.workflow.record_temp.RecordTemp method)


        	(qlib.workflow.record_temp.SigAnaRecord method)


        	(qlib.workflow.record_temp.SignalRecord method)


        	(qlib.workflow.task.manage.TaskManager static method)


      


      	list_artifacts() (qlib.workflow.recorder.Recorder method)


      	list_experiments() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.expm.ExpManager method)


      


      	list_instruments() (qlib.data.data.ClientInstrumentProvider method)

      
        	(qlib.data.data.InstrumentProvider method)


        	(qlib.data.data.LocalInstrumentProvider method)


      


      	list_metrics() (qlib.workflow.recorder.Recorder method)


      	list_params() (qlib.workflow.recorder.Recorder method)


      	list_recorders() (in module qlib.workflow.task.utils)

      
        	(qlib.workflow.__init__.QlibRecorder method)


        	(qlib.workflow.exp.Experiment method)


      


      	list_tags() (qlib.workflow.recorder.Recorder method)


      	load() (qlib.data.base.Expression method)

      
        	(qlib.data.dataset.loader.DLWParser method)


        	(qlib.data.dataset.loader.DataLoader method)


        	(qlib.data.dataset.loader.DataLoaderDH method)


        	(qlib.data.dataset.loader.StaticDataLoader method)


        	(qlib.data.ops.ChangeInstrument method)


        	(qlib.utils.serial.Serializable class method)


        	(qlib.workflow.record_temp.RecordTemp method)


      


      	load_calendar() (qlib.data.data.CalendarProvider method)

      
        	(qlib.data.data.LocalCalendarProvider method)


      


      	load_group_df() (qlib.data.dataset.loader.DLWParser method)

      
        	(qlib.data.dataset.loader.QlibDataLoader method)


      


  

  	
      	load_object() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.recorder.Recorder method)


      


      	load_state_dict() (qlib.rl.trainer.EarlyStopping method)

      
        	(qlib.rl.trainer.Trainer method)


        	(qlib.rl.trainer.TrainingVesselBase method)


        	(qlib.rl.utils.LogBuffer method)


        	(qlib.rl.utils.LogWriter method)


      


      	LocalCalendarProvider (class in qlib.data.data)


      	LocalDatasetProvider (class in qlib.data.data)


      	LocalExpressionProvider (class in qlib.data.data)


      	LocalFeatureProvider (class in qlib.data.data)


      	LocalInstrumentProvider (class in qlib.data.data)


      	LocalPITProvider (class in qlib.data.data)


      	LocalProvider (class in qlib.data.data)


      	locate_index() (qlib.data.data.CalendarProvider method)


      	Log (class in qlib.data.ops)


      	log_artifact() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.recorder.Recorder method)


      


      	log_episode() (qlib.rl.utils.ConsoleWriter method)

      
        	(qlib.rl.utils.CsvWriter method)


        	(qlib.rl.utils.LogBuffer method)


        	(qlib.rl.utils.LogWriter method)


      


      	log_metrics() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.recorder.Recorder method)


      


      	log_params() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.recorder.Recorder method)


      


      	log_step() (qlib.rl.utils.LogWriter method)


      	LogBuffer (class in qlib.rl.utils)


      	LogCollector (class in qlib.rl.utils)


      	loggers (qlib.rl.trainer.Trainer attribute)


      	LogLevel (class in qlib.rl.utils)


      	LogWriter (class in qlib.rl.utils)


      	long_short_backtest() (in module qlib.contrib.evaluate)


      	Lt (class in qlib.data.ops)


  





M


  	
      	Mad (class in qlib.data.ops)


      	market_price (qlib.rl.order_execution.SAOEMetrics attribute)


      	market_volume (qlib.rl.order_execution.SAOEMetrics attribute)


      	Mask (class in qlib.data.ops)


      	Max (class in qlib.data.ops)


      	max() (qlib.workflow.task.utils.TimeAdjuster method)


      	Mean (class in qlib.data.ops)


      	Med (class in qlib.data.ops)


      	MemCache (class in qlib.data.cache)


      	MemCacheUnit (class in qlib.data.cache)


      	MergeCollector (class in qlib.workflow.task.collect)


      	MetaGuideModel (class in qlib.model.meta.model)


      	MetaModel (class in qlib.model.meta.model)


      	MetaTask (class in qlib.model.meta.task)


  

  	
      	MetaTaskDataset (class in qlib.model.meta.dataset)


      	MetaTaskModel (class in qlib.model.meta.model)


      	metrics (qlib.rl.order_execution.SAOEState attribute)

      
        	(qlib.rl.order_execution.SingleAssetOrderExecutionSimple attribute)


        	(qlib.rl.trainer.Trainer attribute)


      


      	MetricsWriter (class in qlib.rl.trainer)


      	Min (class in qlib.data.ops)


      	MinMaxNorm (class in qlib.data.dataset.processor)


      	Model (class in qlib.model.base)


      	model_performance_graph() (in module qlib.contrib.report.analysis_model.analysis_model_performance)


      	ModelFT (class in qlib.model.base)


      	Mul (class in qlib.data.ops)


      	multi_cache_walker() (qlib.data.data.LocalDatasetProvider static method)


      	MultiHorizonGenBase (class in qlib.workflow.task.gen)


  





N


  	
      	named_callbacks() (qlib.rl.trainer.Trainer method)


      	named_loggers() (qlib.rl.trainer.Trainer method)


      	NameDFilter (class in qlib.data.filter)


      	Ne (class in qlib.data.ops)


  

  	
      	normalize_uri_args() (qlib.data.cache.DatasetCache static method)


      	Not (class in qlib.data.ops)


      	NpElemOperator (class in qlib.data.ops)


      	NpPairOperator (class in qlib.data.ops)


  





O


  	
      	on_env_all_done() (qlib.rl.utils.CsvWriter method)

      
        	(qlib.rl.utils.LogBuffer method)


        	(qlib.rl.utils.LogWriter method)


      


      	on_env_all_ready() (qlib.rl.utils.LogWriter method)


      	on_env_reset() (qlib.rl.utils.LogWriter method)


      	on_env_step() (qlib.rl.utils.LogWriter method)


      	on_fit_end() (qlib.rl.trainer.Checkpoint method)


      	on_fit_start() (qlib.rl.trainer.EarlyStopping method)


      	on_iter_end() (qlib.rl.trainer.Checkpoint method)


      	on_train_end() (qlib.rl.trainer.MetricsWriter method)


  

  	
      	on_validate_end() (qlib.rl.trainer.EarlyStopping method)

      
        	(qlib.rl.trainer.MetricsWriter method)


      


      	online_models() (qlib.workflow.online.utils.OnlineTool method)

      
        	(qlib.workflow.online.utils.OnlineToolR method)


      


      	OnlineManager (class in qlib.workflow.online.manager)


      	OnlineStrategy (class in qlib.workflow.online.strategy)


      	OnlineTool (class in qlib.workflow.online.utils)


      	OnlineToolR (class in qlib.workflow.online.utils)


      	OpsWrapper (class in qlib.data.ops)


      	Or (class in qlib.data.ops)


      	order (qlib.rl.order_execution.SAOEState attribute)


  





P


  	
      	pa (qlib.rl.order_execution.SAOEMetrics attribute)


      	PairOperator (class in qlib.data.ops)


      	PairRolling (class in qlib.data.ops)


      	PAPenaltyReward (class in qlib.rl.order_execution)


      	period_feature() (qlib.data.data.LocalPITProvider method)

      
        	(qlib.data.data.PITProvider method)


      


      	PERIODIC (qlib.rl.utils.LogLevel attribute)


      	PFeature (class in qlib.data.base)


      	PITProvider (class in qlib.data.data)


      	PITProviderWrapper (in module qlib.data.data)


      	PortAnaRecord (class in qlib.workflow.record_temp)


      	position (qlib.rl.order_execution.SAOEMetrics attribute)

      
        	(qlib.rl.order_execution.SAOEState attribute)


      


      	post_exe_step() (qlib.rl.order_execution.SAOEStrategy method)


      	post_upper_level_exe_step() (qlib.rl.order_execution.SAOEStrategy method)


      	Power (class in qlib.data.ops)


      	PPO (class in qlib.rl.order_execution)


      	predict() (qlib.model.base.BaseModel method)

      
        	(qlib.model.base.Model method)


      


  

  	
      	PredUpdater (class in qlib.workflow.online.update)


      	prefix (qlib.rl.utils.ConsoleWriter attribute)


      	prepare() (qlib.data.dataset.__init__.Dataset method)

      
        	(qlib.data.dataset.__init__.DatasetH method)


      


      	prepare_data() (qlib.workflow.online.update.DSBasedUpdater method)


      	prepare_online_models() (qlib.workflow.online.strategy.OnlineStrategy method)


      	prepare_signals() (qlib.workflow.online.manager.OnlineManager method)


      	prepare_tasks() (qlib.model.meta.dataset.MetaTaskDataset method)

      
        	(qlib.workflow.online.strategy.OnlineStrategy method)


        	(qlib.workflow.online.strategy.RollingStrategy method)


      


      	prioritize() (qlib.workflow.task.manage.TaskManager method)


      	process_collect() (qlib.workflow.task.collect.Collector static method)


      	process_data() (qlib.data.dataset.handler.DataHandlerLP method)


      	ProcessInf (class in qlib.data.dataset.processor)


      	Processor (class in qlib.data.dataset.processor)


      	ProviderBackendMixin (class in qlib.data.data)


      	ProxySAOEStrategy (class in qlib.rl.order_execution)


  





Q


  	
      	qlib.contrib.evaluate (module)


      	qlib.contrib.report.analysis_model.analysis_model_performance (module)


      	qlib.contrib.report.analysis_position.cumulative_return (module)


      	qlib.contrib.report.analysis_position.rank_label (module)


      	qlib.contrib.report.analysis_position.report (module)


      	qlib.contrib.report.analysis_position.risk_analysis (module)


      	qlib.contrib.report.analysis_position.score_ic (module)


      	qlib.contrib.strategy (module)


      	qlib.data.base (module)


      	qlib.data.data (module)


      	qlib.data.dataset.__init__ (module)


      	qlib.data.dataset.handler (module)


      	qlib.data.dataset.loader (module)


      	qlib.data.dataset.processor (module)


      	qlib.data.filter (module)


      	qlib.data.ops (module)


      	qlib.model.base (module)


      	qlib.model.ens.ensemble (module)


      	qlib.model.ens.group (module)


  

  	
      	qlib.model.trainer (module)


      	qlib.rl (module)


      	qlib.rl.order_execution (module)


      	qlib.rl.strategy (module)


      	qlib.rl.trainer (module)


      	qlib.rl.utils (module)


      	qlib.utils.serial (module)


      	qlib.workflow.online.manager (module)


      	qlib.workflow.online.strategy (module)


      	qlib.workflow.online.update (module)


      	qlib.workflow.online.utils (module)


      	qlib.workflow.record_temp (module)


      	qlib.workflow.task.collect (module)


      	qlib.workflow.task.gen (module)


      	qlib.workflow.task.manage (module)


      	qlib.workflow.task.utils (module)


      	QlibDataLoader (class in qlib.data.dataset.loader)


      	QlibRecorder (class in qlib.workflow.__init__)


      	Quantile (class in qlib.data.ops)


      	query() (qlib.workflow.task.manage.TaskManager method)


  





R


  	
      	Rank (class in qlib.data.ops)


      	rank_label_graph() (in module qlib.contrib.report.analysis_position.rank_label)


      	re_query() (qlib.workflow.task.manage.TaskManager method)


      	read_data_from_cache() (qlib.data.cache.DiskDatasetCache class method)


      	readonly() (qlib.data.dataset.processor.DropCol method)

      
        	(qlib.data.dataset.processor.DropnaProcessor method)


        	(qlib.data.dataset.processor.FilterCol method)


        	(qlib.data.dataset.processor.Processor method)


      


      	rebase() (qlib.data.storage.storage.FeatureStorage method)


      	Recorder (class in qlib.workflow.recorder)


      	RecorderCollector (class in qlib.workflow.task.collect)


      	RecordTemp (class in qlib.workflow.record_temp)


      	RecordUpdater (class in qlib.workflow.online.update)


      	Recurrent (class in qlib.rl.order_execution)


      	reduce() (qlib.model.ens.group.Group method)


      	Ref (class in qlib.data.ops)


      	register() (qlib.data.ops.OpsWrapper method)


      	register_all_ops() (in module qlib.data.ops)


      	register_all_wrappers() (in module qlib.data.data)


      	remove() (qlib.workflow.task.manage.TaskManager method)


      	render() (qlib.rl.utils.EnvWrapper method)


      	replace_task() (qlib.workflow.task.manage.TaskManager method)


      	replace_task_handler_with_cache() (in module qlib.workflow.task.utils)


      	report_graph() (in module qlib.contrib.report.analysis_position.report)


      	reset() (qlib.contrib.strategy.SBBStrategyBase method)

      
        	(qlib.contrib.strategy.TWAPStrategy method)


        	(qlib.rl.order_execution.ProxySAOEStrategy method)


        	(qlib.rl.order_execution.SAOEIntStrategy method)


        	(qlib.rl.order_execution.SAOEStrategy method)


        	(qlib.rl.utils.EnvWrapper method)


        	(qlib.rl.utils.LogCollector method)


      


  

  	
      	reset_level_infra() (qlib.contrib.strategy.SBBStrategyEMA method)


      	reset_online_tag() (qlib.workflow.online.utils.OnlineTool method)

      
        	(qlib.workflow.online.utils.OnlineToolR method)


      


      	reset_waiting() (qlib.workflow.task.manage.TaskManager method)


      	Resi (class in qlib.data.ops)


      	return_task() (qlib.workflow.task.manage.TaskManager method)


      	Reward (class in qlib.rl)


      	reward() (qlib.rl.order_execution.PAPenaltyReward method)

      
        	(qlib.rl.Reward method)


        	(qlib.rl.RewardCombination method)


      


      	RewardCombination (class in qlib.rl)


      	rewrite() (qlib.data.storage.storage.FeatureStorage method)


      	risk_analysis() (in module qlib.contrib.evaluate)


      	risk_analysis_graph() (in module qlib.contrib.report.analysis_position.risk_analysis)


      	RMDLoader (class in qlib.workflow.online.update)


      	RobustZScoreNorm (class in qlib.data.dataset.processor)


      	Rolling (class in qlib.data.ops)


      	RollingEnsemble (class in qlib.model.ens.ensemble)


      	RollingGen (class in qlib.workflow.task.gen)


      	RollingGroup (class in qlib.model.ens.group)


      	RollingStrategy (class in qlib.workflow.online.strategy)


      	routine() (qlib.workflow.online.manager.OnlineManager method)


      	Rsquare (class in qlib.data.ops)


      	run_task() (in module qlib.workflow.task.manage)


  





S


  	
      	safe_fetch_task() (qlib.workflow.task.manage.TaskManager method)


      	SAOEIntStrategy (class in qlib.rl.order_execution)


      	SAOEMetrics (class in qlib.rl.order_execution)


      	SAOEState (class in qlib.rl.order_execution)


      	SAOEStateAdapter (class in qlib.rl.order_execution)


      	SAOEStrategy (class in qlib.rl.order_execution)


      	save() (qlib.workflow.record_temp.RecordTemp method)


      	save_objects() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.recorder.Recorder method)


      


      	SBBStrategyBase (class in qlib.contrib.strategy)


      	SBBStrategyEMA (class in qlib.contrib.strategy)


      	score_ic_graph() (in module qlib.contrib.report.analysis_position.score_ic)


      	search_records() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.exp.Experiment method)


        	(qlib.workflow.expm.ExpManager method)


      


      	Serializable (class in qlib.utils.serial)


      	SeriesDFilter (class in qlib.data.filter)


      	set_end_time() (qlib.workflow.task.utils.TimeAdjuster method)


      	set_horizon() (qlib.workflow.task.gen.MultiHorizonGenBase method)


      	set_online_tag() (qlib.workflow.online.utils.OnlineTool method)

      
        	(qlib.workflow.online.utils.OnlineToolR method)


      


      	set_tags() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.recorder.Recorder method)


      


      	set_uri() (qlib.workflow.__init__.QlibRecorder method)


      	setup_data() (qlib.data.dataset.__init__.Dataset method)

      
        	(qlib.data.dataset.__init__.DatasetH method)


        	(qlib.data.dataset.handler.DataHandler method)


        	(qlib.data.dataset.handler.DataHandlerLP method)


      


      	shift() (qlib.workflow.task.utils.TimeAdjuster method)


      	should_stop (qlib.rl.trainer.Trainer attribute)


      	SigAnaRecord (class in qlib.workflow.record_temp)


      	Sign (class in qlib.data.ops)


  

  	
      	SignalRecord (class in qlib.workflow.record_temp)


      	simulate() (qlib.workflow.online.manager.OnlineManager method)


      	Simulator (class in qlib.rl)


      	SingleAssetOrderExecutionSimple (class in qlib.rl.order_execution)


      	SingleKeyEnsemble (class in qlib.model.ens.ensemble)


      	SingleOrderStrategy (class in qlib.rl.strategy)


      	Skew (class in qlib.data.ops)


      	Slope (class in qlib.data.ops)


      	SoftTopkStrategy (class in qlib.contrib.strategy)


      	start() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.exp.Experiment method)


      


      	start_exp() (qlib.workflow.__init__.QlibRecorder method)

      
        	(qlib.workflow.expm.ExpManager method)


      


      	start_index (qlib.data.storage.file_storage.FileFeatureStorage attribute)

      
        	(qlib.data.storage.storage.FeatureStorage attribute)


      


      	start_run() (qlib.workflow.recorder.Recorder method)


      	state_dict() (qlib.rl.trainer.EarlyStopping method)

      
        	(qlib.rl.trainer.Trainer method)


        	(qlib.rl.trainer.TrainingVesselBase method)


        	(qlib.rl.utils.LogBuffer method)


        	(qlib.rl.utils.LogWriter method)


      


      	StateInterpreter (class in qlib.rl)


      	StaticDataLoader (class in qlib.data.dataset.loader)


      	status (qlib.rl.utils.EnvWrapper attribute)


      	Std (class in qlib.data.ops)


      	step() (qlib.rl.order_execution.SingleAssetOrderExecutionSimple method)

      
        	(qlib.rl.Simulator method)


        	(qlib.rl.utils.EnvWrapper method)


      


      	step_count (qlib.rl.utils.LogWriter attribute)


      	stock_id (qlib.rl.order_execution.SAOEMetrics attribute)


      	Sub (class in qlib.data.ops)


      	Sum (class in qlib.data.ops)


  





T


  	
      	TanhProcess (class in qlib.data.dataset.processor)


      	task_generator() (in module qlib.workflow.task.gen)


      	task_stat() (qlib.workflow.task.manage.TaskManager method)


      	task_train() (in module qlib.model.trainer)


      	TaskGen (class in qlib.workflow.task.gen)


      	TaskManager (class in qlib.workflow.task.manage)


      	test() (qlib.rl.trainer.Trainer method)

      
        	(qlib.rl.trainer.TrainingVessel method)


        	(qlib.rl.trainer.TrainingVesselBase method)


      


      	test_seed_iterator() (qlib.rl.trainer.TrainingVessel method)

      
        	(qlib.rl.trainer.TrainingVesselBase method)


      


      	ticks_for_order (qlib.rl.order_execution.SAOEState attribute)

      
        	(qlib.rl.order_execution.SingleAssetOrderExecutionSimple attribute)


      


      	ticks_index (qlib.rl.order_execution.SAOEState attribute)

      
        	(qlib.rl.order_execution.SingleAssetOrderExecutionSimple attribute)


      


      	ticks_per_step (qlib.rl.order_execution.SAOEState attribute)


      	TimeAdjuster (class in qlib.workflow.task.utils)


      	TimeRangeFlt (class in qlib.data.dataset.processor)


      	to_config() (qlib.data.filter.BaseDFilter method)

      
        	(qlib.data.filter.ExpressionDFilter method)


        	(qlib.data.filter.NameDFilter method)


      


      	to_pickle() (qlib.utils.serial.Serializable method)


      	TopkDropoutStrategy (class in qlib.contrib.strategy)


  

  	
      	trade_price (qlib.rl.order_execution.SAOEMetrics attribute)


      	trade_value (qlib.rl.order_execution.SAOEMetrics attribute)


      	train() (in module qlib.rl.trainer)

      
        	(qlib.model.trainer.DelayTrainerRM method)


        	(qlib.model.trainer.Trainer method)


        	(qlib.model.trainer.TrainerR method)


        	(qlib.model.trainer.TrainerRM method)


        	(qlib.rl.trainer.TrainingVessel method)


        	(qlib.rl.trainer.TrainingVesselBase method)


      


      	train_seed_iterator() (qlib.rl.trainer.TrainingVessel method)

      
        	(qlib.rl.trainer.TrainingVesselBase method)


      


      	Trainer (class in qlib.model.trainer)

      
        	(class in qlib.rl.trainer)


      


      	TrainerR (class in qlib.model.trainer)


      	TrainerRM (class in qlib.model.trainer)


      	TrainingVessel (class in qlib.rl.trainer)


      	TrainingVesselBase (class in qlib.rl.trainer)


      	TResample (class in qlib.data.ops)


      	trunc_segments() (in module qlib.workflow.task.gen)


      	truncate() (qlib.workflow.task.utils.TimeAdjuster method)


      	twap_price (qlib.rl.order_execution.SingleAssetOrderExecutionSimple attribute)


      	TwapRelativeActionInterpreter (class in qlib.rl.order_execution)


      	TWAPStrategy (class in qlib.contrib.strategy)


  





U


  	
      	update() (qlib.data.cache.DatasetCache method)

      
        	(qlib.data.cache.DiskDatasetCache method)


        	(qlib.data.cache.DiskExpressionCache method)


        	(qlib.data.cache.ExpressionCache method)


        	(qlib.data.storage.file_storage.FileInstrumentStorage method)


        	(qlib.data.storage.storage.InstrumentStorage method)


        	(qlib.workflow.online.update.DSBasedUpdater method)


        	(qlib.workflow.online.update.RecordUpdater method)


      


  

  	
      	update_online_pred() (qlib.workflow.online.utils.OnlineTool method)

      
        	(qlib.workflow.online.utils.OnlineToolR method)


      


      	uri (qlib.workflow.expm.ExpManager attribute)


      	uri_context() (qlib.workflow.__init__.QlibRecorder method)


  





V


  	
      	val_seed_iterator() (qlib.rl.trainer.TrainingVessel method)

      
        	(qlib.rl.trainer.TrainingVesselBase method)


      


      	validate() (qlib.rl.ActionInterpreter method)

      
        	(qlib.rl.StateInterpreter method)


        	(qlib.rl.trainer.TrainingVessel method)


        	(qlib.rl.trainer.TrainingVesselBase method)


      


  

  	
      	Var (class in qlib.data.ops)


      	vectorize_env() (in module qlib.rl.utils)


      	venv_from_iterator() (qlib.rl.trainer.Trainer method)


  





W


  	
      	wait() (qlib.workflow.task.manage.TaskManager method)


      	WeightStrategyBase (class in qlib.contrib.strategy)


      	WMA (class in qlib.data.ops)


      	worker() (qlib.model.trainer.DelayTrainerRM method)

      
        	(qlib.model.trainer.Trainer method)


        	(qlib.model.trainer.TrainerRM method)


      


  

  	
      	write() (qlib.data.storage.file_storage.FileFeatureStorage method)

      
        	(qlib.data.storage.storage.FeatureStorage method)


      


  





Z


  	
      	ZScoreNorm (class in qlib.data.dataset.processor)


  







          

      

      

    

  _images/analysis_model_monthly_IC.png
Monthly 1C

2,021+
2,020
2,020
2,019+
2,019+
2,018-
2,018-

2,017+

2,017+ 0 0 0 0 U g

0.08

0.06

-0.02





_images/analysis_model_cumulative_return.png
Cumulative Return

—— long-short
~—— long-average

0 ~4"‘|/’\-4V"/w

W

SO SO
SIS SRR

e a0 o o T S R R s By g S o R %





_images/analysis_model_long_short.png
-0.02

long-short

-0.01

long-average

long-short

long-average





_images/report.png
w

\\\\\ BB,

—e— cum bench

—e— cum return wo cost

—e— cum return w cost

e return wo mdd

= return w cost mdd

—e— cum ex return wo cost
—e— cum ex return w cost

—e— turnover

== cum ex return w cost mdd
= cum ex return wo cost mdd





_images/risk_analysis_annualized_return.png
annualized_return

2,0, 0,0, <0, ~0, <0, 0, 0, 0, < <0, %0, 0, <05 05 0; 0
0,52,50,50,50,50,50,70,70,0,% 00530 00,
B A

—e— excess_return_with_cost_annualized_return
—e— excess_return_without_cost_annualized_return





_images/online_serving.png
=== === = -

Explanation

Module

Process

OnlineManager \

OnlineStrategy

.
.
.
.
.
.

Prepare Online

Models

[ First Task }

Update Prediction

Train Task

Prepare Online
Models

Prepare Signals

___________F____________+__

{ Prepare Task } {

Prepare Online
Models

} { Get Collector }

Public Module

TaskGenerator

TaskManager

Updater

Trainer

OnlineTool

Collector






_images/risk_analysis_bar.png
0.004 W s
annualized return

0.002
W information ratio
o rawdow
excess_return_without_cost excess_return_with_cost max dravdown
015
01
0.05
— | S
excess_return_without_cost excess_return_with_cost
2
0.5
o
excess_return_without_cost. excess_return_with_cost
o— _
-0.05
-01
excess_return_without_cost excess_return_with_cost






_images/risk_analysis_information_ratio.png
information_ratio

—e— excess_return_with_cost_information_ratio

2,0, 0, %, 2, %, D, 0, 0, 0, %, %, oy, 0, 0, %, <, 0
05050 e 2 e O 0 2 0 O 2 20 00 R
% 0@%0)%00 Q?Qr%%’a@‘?}%%%’z 7 % %






_images/risk_analysis_max_drawdown.png
max_drawdown

-0.01

-0.02

-0.03

—0.04

-0.05

-0.06

%, %, D,
2, o,)o,)g)o

o, 0,

ENCNEN

005 2,0,

2, %, %

0,0, 0, o, %
0,0, 0,0, 0, 0,
ERCRERENENC

0505 027050, 0,

0,00,25.725,2:

<2, <0,

2, 2,%
%o %o %o %o %o 20 20 %0 %5,
0% 0% %

25705 s

—e— excess_retum_
—e— excess_retum_y

_cost_max_drawdown
ithout_cost_max_drawdown





nav.xhtml

    
      Table of Contents


      
        		
          Qlib Documentation
        


        		
          Introduction
          
            		
              Introduction
            


            		
              Framework
            


          


        


        		
          Quick Start
          
            		
              Introduction
            


            		
              Installation
            


            		
              Prepare Data
            


            		
              Auto Quant Research Workflow
            


            		
              Custom Model Integration
            


          


        


        		
          Installation
          
            		
              Qlib Installation
            


          


        


        		
          Initialization
          
            		
              Initialization
              
                		
                  Parameters
                


              


            


          


        


        		
          Data Retrieval
          
            		
              Introduction
            


            		
              Examples
            


            		
              API
            


          


        


        		
          Custom Model Integration
          
            		
              Introduction
            


            		
              Custom Model Class
            


            		
              Configuration File
            


            		
              Model Testing
            


            		
              Reference
            


          


        


        		
          Workflow: Workflow Management
          
            		
              Introduction
            


            		
              Complete Example
            


            		
              Configuration File
              
                		
                  Qlib Init Section
                


                		
                  Task Section
                


              


            


          


        


        		
          Data Layer: Data Framework & Usage
          
            		
              Introduction
            


            		
              Data Preparation
              
                		
                  Qlib Format Data
                


                		
                  Qlib Format Dataset
                


                		
                  Automatic update of daily frequency data
                


                		
                  Converting CSV Format into Qlib Format
                


                		
                  Stock Pool (Market)
                


                		
                  Multiple Stock Modes
                


              


            


            		
              Data API
              
                		
                  Data Retrieval
                


                		
                  Feature
                


                		
                  Filter
                


                		
                  Reference
                


              


            


            		
              Data Loader
              
                		
                  QlibDataLoader
                


                		
                  StaticDataLoader
                


                		
                  Interface
                


                		
                  API
                


              


            


            		
              Data Handler
              
                		
                  DataHandlerLP
                


                		
                  Interface
                


                		
                  Processor
                


                		
                  Example
                


                		
                  API
                


              


            


            		
              Dataset
              
                		
                  API
                


              


            


            		
              Cache
              
                		
                  Global Memory Cache
                


                		
                  ExpressionCache
                


                		
                  DatasetCache
                


              


            


            		
              Data and Cache File Structure
            


          


        


        		
          Forecast Model: Model Training & Prediction
          
            		
              Introduction
            


            		
              Base Class & Interface
            


            		
              Example
            


            		
              Custom Model
            


            		
              API
            


          


        


        		
          Portfolio Management and Backtest
          
            		
              Introduction
            


            		
              Base Class & Interface
              
                		
                  BaseStrategy
                


                		
                  WeightStrategyBase
                


              


            


            		
              Implemented Strategy
              
                		
                  TopkDropoutStrategy
                


                		
                  EnhancedIndexingStrategy
                


              


            


            		
              Usage & Example
              
                		
                  Prediction Score
                


                		
                  Running backtest
                


                		
                  Result
                


              


            


            		
              Reference
            


          


        


        		
          Nested Decision Execution: High-Frequency Trading
          
            		
              Introduction
            


            		
              Example
            


          


        


        		
          Meta Controller: Meta-Task & Meta-Dataset & Meta-Model
          
            		
              Introduction
            


            		
              Meta Task
            


            		
              Meta Dataset
            


            		
              Meta Model
              
                		
                  General Meta Model
                


                		
                  Meta Task Model
                


                		
                  Meta Guide Model
                


              


            


            		
              Example
            


          


        


        		
          Qlib Recorder: Experiment Management
          
            		
              Introduction
            


            		
              Qlib Recorder
            


            		
              Experiment Manager
            


            		
              Experiment
            


            		
              Recorder
            


            		
              Record Template
            


            		
              Known Limitations
            


          


        


        		
          Analysis: Evaluation & Results Analysis
          
            		
              Introduction
            


            		
              Graphical Reports
            


            		
              Usage & Example
              
                		
                  Usage of analysis_position.report
                


                		
                  Usage of analysis_position.score_ic
                


                		
                  Usage of analysis_position.risk_analysis
                


                		
                  Usage of analysis_model.analysis_model_performance
                


              


            


          


        


        		
          Online Serving: Online Management & Strategy & Tool
          
            		
              Introduction
            


            		
              Online Manager
            


            		
              Online Strategy
            


            		
              Online Tool
            


            		
              Updater
            


          


        


        		
          Reinforcement Learning
          
            		
              Guidance
              
                		
                  Beginners to Reinforcement Learning Algorithms
                


                		
                  Reinforcement Learning Algorithm Researcher
                


                		
                  Quantitative Researcher
                


              


            


            		
              Overall
              
                		
                  Reinforcement Learning
                


                		
                  Potential Application Scenarios in Quantitative Trading
                


              


            


            		
              Quick Start
            


            		
              Framework
              
                		
                  EnvWrapper
                


                		
                  Policy
                


                		
                  Training Vessel & Trainer
                


              


            


          


        


        		
          Building Formulaic Alphas
          
            		
              Introduction
            


            		
              Building Formulaic Alphas in Qlib
              
                		
                  Example
                


              


            


            		
              Reference
            


          


        


        		
          Online & Offline mode
          
            		
              Introduction
            


            		
              Qlib-Server
            


            		
              Reference
            


          


        


        		
          Serialization
          
            		
              Introduction
            


            		
              Serializable Class
            


            		
              Example
            


            		
              API
            


          


        


        		
          Task Management
          
            		
              Introduction
            


            		
              Task Generating
            


            		
              Task Storing
            


            		
              Task Training
            


            		
              Task Collecting
            


          


        


        		
          Point-In-Time database
          
            		
              Introduction
            


            		
              Data Preparation
            


            		
              File-based design for PIT data
            


          


        


        		
          Code Standard
          
            		
              Docstring
            


            		
              Continuous Integration
            


          


        


        		
          Development Guidance
        


        		
          API
          
            		
              Data
              
                		
                  Provider
                


                		
                  Filter
                


                		
                  Class
                


                		
                  Operator
                


                		
                  Cache
                


                		
                  Storage
                


                		
                  Dataset
                


              


            


            		
              Contrib
              
                		
                  Model
                


                		
                  Strategy
                


                		
                  Evaluate
                


                		
                  Report
                


              


            


            		
              Workflow
              
                		
                  Experiment Manager
                


                		
                  Experiment
                


                		
                  Recorder
                


                		
                  Record Template
                


              


            


            		
              Task Management
              
                		
                  TaskGen
                


                		
                  TaskManager
                


                		
                  Trainer
                


                		
                  Collector
                


                		
                  Group
                


                		
                  Ensemble
                


                		
                  Utils
                


              


            


            		
              Online Serving
              
                		
                  Online Manager
                


                		
                  Online Strategy
                


                		
                  Online Tool
                


                		
                  RecordUpdater
                


              


            


            		
              Utils
              
                		
                  Serializable
                


              


            


            		
              RL
              
                		
                  Base Component
                


                		
                  Strategy
                


                		
                  Trainer
                


                		
                  Order Execution
                


                		
                  Utils
                


              


            


          


        


        		
          FAQ
          
            		
              Qlib Frequently Asked Questions
              
                		
                  1. RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phaseâ�¦
                


                		
                  2. qlib.data.cache.QlibCacheException: It sees the key(â�¦) of the redis lock has existed in your redis db now.
                


                		
                  3. ModuleNotFoundError: No module named â��qlib.data._libs.rollingâ��
                


                		
                  4. BadNamespaceError: / is not a connected namespace
                


                		
                  5. TypeError: send() got an unexpected keyword argument â��binaryâ��
                


              


            


          


        


        		
          Change Log
          
            		
              Version 0.1.0
            


            		
              Version 0.1.1
            


            		
              Version 0.1.2
            


            		
              Version 0.1.3
            


            		
              Version 0.2.0
            


            		
              Version 0.2.1
            


            		
              Version 0.2.2
            


            		
              Version 0.2.3
            


            		
              Version 0.2.4
            


            		
              Version 0.3.0
            


            		
              Version 0.3.1
            


            		
              Version 0.3.2
            


            		
              Version 0.3.3
            


            		
              Version 0.3.4
            


            		
              Version 0.3.5
            


            		
              Version 0.4.0
            


            		
              Version 0.4.1
            


            		
              Version 0.4.2
            


            		
              Version 0.4.3
            


            		
              Version 0.4.4
            


            		
              Version 0.4.5
            


            		
              Version 0.4.6
            


            		
              Version 0.5.0
            


            		
              Version 0.8.0
            


            		
              Other Versions
            


          


        


      


    
  

_images/topk_drop.png
Drop =3, TopK =5

The stock that is held

The stock that will continue to be held

High Score The stock that will be bought

The stock that will be sold

— — Other stock

Low Score

Current Trading After Tarding





_images/risk_analysis_std.png
std

—e— excess_return_with_cost_std
—e— excess_return_without_cost_std

% B, %, By
NN
% % %

D, 0, 0, <0, Y0, <0, 0, <0, 0, <, 0, 0, 0, 0, 0,
0y oy 21y 0yt 2t 2 0 0, 0, R0 0,

2.
2,
IR I I I I IR CIRCINCIA S

B Y Y % % D % Y Y % B % Y Y %






_images/score_ic.png
Score IC

o
S008I0y

——ic
—e— rank_ic





_static/comment-bright.png





_static/1.png
Qlib





_static/ajax-loader.gif





_static/comment-close.png





_static/comment.png





_static/down-pressed.png





_static/file.png





_static/minus.png





_static/down.png





_static/up-pressed.png





_static/up.png





_static/plus.png





_static/img/RL_framework.png
Observation

Agent
policy

Reward

Enviro

nment

Action





_static/img/QlibRL_framework.png
Applications

Portfolio
Single-asset OE Management
SDK
Trainer
Agent EnvWrapper
Action
Action Interpreter
Simulator
Policy

Observation [ S Simulator

Reward
Reward Function






_static/img/framework.png
Workflow Interface

Infrastracture

Analyser

Forecasting
Analyser

Portfolio
Analyser

Execution
Analyser

Model Interpreter

Online Serving

Information Extractor

Forecast Model

Portfolio Generator

Order Executor

Factor Text proemoeoseee
: VWAP/Close/.
Graph Event Executor
Data Server
local remote

Explanation

development






_static/img/change doc.gif
© Introduction
Introduction Docs » quis : Quantitative Platform

Framework

Qlib: Quantitative Platform

Introduction

8 Read the Docs

© Edit on GitHub.





_static/img/framework-abstract.jpg
M.

Reinforcement Supervised
Leaming Leaming .
m "'.."Anp it
101 [l
ar 4l
! ecursive
Data Trading Strategy Decision Execution

=

Analysis

pr

Market Dynamic Modeling





_static/img/analysis/analysis_model_IC.png
Information Coefficient (IC)

o"oi:"ae?"ae I S "aeo*‘aeoeffffo*fo*fo*ﬁ*@fff%&*@%q

I IS S AL SN LAY, N Y NN YN

S I RS AT G






_static/img/online_serving.png
=== === = -

Explanation

Module

Process

OnlineManager \

OnlineStrategy

.
.
.
.
.
.

Prepare Online

Models

[ First Task }

Update Prediction

Train Task

Prepare Online
Models

Prepare Signals

___________F____________+__

{ Prepare Task } {

Prepare Online
Models

} { Get Collector }

Public Module

TaskGenerator

TaskManager

Updater

Trainer

OnlineTool

Collector






_static/img/topk_drop.png
Drop =3, TopK =5

The stock that is held

The stock that will continue to be held

High Score The stock that will be bought

The stock that will be sold

— — Other stock

Low Score

Current Trading After Tarding





_static/img/analysis/analysis_model_cumulative_return.png
Cumulative Return

—— long-short
~—— long-average

0 ~4"‘|/’\-4V"/w

W

SO SO
SIS SRR

e a0 o o T S R R s By g S o R %





_static/img/analysis/analysis_model_long_short.png
-0.02

long-short

-0.01

long-average

long-short

long-average





_static/img/analysis/analysis_model_NDQ.png
25

05

Observed Quantile

IC Normal Dist. Q-Q

Normal Distribution Quantile

o trace2
— trace 3





_static/img/analysis/analysis_model_auto_correlation.png
0.8

07

0.6

05

0.4

03

0.2

01

Auto Correlation

R
5

K aasssg PORIIE

%;dfffgffo’faeff

AESERXRES

o,

. x’g’s{’x’x’ﬁzs{’

G

%
B0%





_static/img/analysis/cumulative_return_buy_minus_sell.png
buy_minus_sell

buy_minus_sell(the red line in the histogram on the right represents the average)

20 —e— cum buy minus sell
—— buy plus sell weight
100} W buy minus sell value
80,
50,
40
20,
" FRERRAPN
St Shasiuh el s 4 Prop
2
I S T

S R
B S RER EAR AL AR NE RN





_static/img/analysis/cumulative_return_hold.png
hold

hold(the red line in the histogram on the right represents the average)

0.6
80)
0.4 70]
60
0.2 50
40
1 o 30|
et 20|
0.5
10|
SOSIS
e
SO0,

a2l

—e— cum hold
—e— hold weight
W hold value





_static/img/analysis/analysis_model_monthly_IC.png
Monthly 1C

2,021+
2,020
2,020
2,019+
2,019+
2,018-
2,018-

2,017+

2,017+ 0 0 0 0 U g

0.08

0.06

-0.02





_static/img/analysis/cumulative_return_buy.png
buy

buy(the red line in the histogram on the right represents the average)

YNy
b bbb,
ErRRCE e Sl N SR TR SRS

—e— cum buy
—e— buy weight
W buy value





_static/img/analysis/cumulative_return_sell.png
sell

sell(the red line in the histogram on the right represents the average)

70

SOSOSOS
USOLSIR:
SO0050,

A S A A S AR S e A S e

—— cum sel
—o— sell weight
W sell value





_static/img/analysis/rank_label_buy.png
lable-rark-ratio: %

80

60

a0

20

I
(L4l §

i ‘\ w \‘.wu h

"‘ “"H\ |||' \H "‘

M
"1,1

SIS,
S s






_images/analysis_model_IC.png
Information Coefficient (IC)

o"oi:"ae?"ae I S "aeo*‘aeoeffffo*fo*fo*ﬁ*@fff%&*@%q

I IS S AL SN LAY, N Y NN YN

S I RS AT G






_images/analysis_model_NDQ.png
25

05

Observed Quantile

IC Normal Dist. Q-Q

Normal Distribution Quantile

o trace2
— trace 3





_images/RL_framework.png
Observation

Agent
policy

Reward

Enviro

nment

Action





_images/analysis_model_auto_correlation.png
0.8

07

0.6

05

0.4

03

0.2

01

Auto Correlation

R
5

K aasssg PORIIE

%;dfffgffo’faeff

AESERXRES

o,

. x’g’s{’x’x’ﬁzs{’

G

%
B0%





_static/img/analysis/risk_analysis_annualized_return.png
annualized_return

2,0, 0,0, <0, ~0, <0, 0, 0, 0, < <0, %0, 0, <05 05 0; 0
0,52,50,50,50,50,50,70,70,0,% 00530 00,
B A

—e— excess_return_with_cost_annualized_return
—e— excess_return_without_cost_annualized_return





_static/img/analysis/risk_analysis_bar.png
0.004 W s
annualized return

0.002
W information ratio
o rawdow
excess_return_without_cost excess_return_with_cost max dravdown
015
01
0.05
— | S
excess_return_without_cost excess_return_with_cost
2
0.5
o
excess_return_without_cost. excess_return_with_cost
o— _
-0.05
-01
excess_return_without_cost excess_return_with_cost






_static/img/analysis/rank_label_sell.png
lable-rark-ratio: %

Sell

{ “ |\ “‘H !
‘H HH\H\

1"

l“|1






_static/img/analysis/report.png
w

\\\\\ BB,

—e— cum bench

—e— cum return wo cost

—e— cum return w cost

e return wo mdd

= return w cost mdd

—e— cum ex return wo cost
—e— cum ex return w cost

—e— turnover

== cum ex return w cost mdd
= cum ex return wo cost mdd





_static/img/analysis/risk_analysis_std.png
std

—e— excess_return_with_cost_std
—e— excess_return_without_cost_std

% B, %, By
NN
% % %

D, 0, 0, <0, Y0, <0, 0, <0, 0, <, 0, 0, 0, 0, 0,
0y oy 21y 0yt 2t 2 0 0, 0, R0 0,

2.
2,
IR I I I I IR CIRCINCIA S

B Y Y % % D % Y Y % B % Y Y %






_images/QlibRL_framework.png
Applications

Portfolio
Single-asset OE Management
SDK
Trainer
Agent EnvWrapper
Action
Action Interpreter
Simulator
Policy

Observation [ S Simulator

Reward
Reward Function






_static/img/analysis/score_ic.png
Score IC

o
S008I0y

——ic
—e— rank_ic





_static/img/analysis/risk_analysis_information_ratio.png
information_ratio

—e— excess_return_with_cost_information_ratio

2,0, 0, %, 2, %, D, 0, 0, 0, %, %, oy, 0, 0, %, <, 0
05050 e 2 e O 0 2 0 O 2 20 00 R
% 0@%0)%00 Q?Qr%%’a@‘?}%%%’z 7 % %






_static/img/analysis/risk_analysis_max_drawdown.png
max_drawdown

-0.01

-0.02

-0.03

—0.04

-0.05

-0.06

%, %, D,
2, o,)o,)g)o

o, 0,

ENCNEN

005 2,0,

2, %, %

0,0, 0, o, %
0,0, 0,0, 0, 0,
ERCRERENENC

0505 027050, 0,

0,00,25.725,2:

<2, <0,

2, 2,%
%o %o %o %o %o 20 20 %0 %5,
0% 0% %

25705 s

—e— excess_retum_
—e— excess_retum_y

_cost_max_drawdown
ithout_cost_max_drawdown





_static/img/logo/1.png
Qlib





_static/img/analysis/rank_label_hold.png
lable-rark-ratio: %

70

60

50

a0

30

20

S
A I I SIS e 0 Y S LTI,






_static/img/logo/yellow_bg_rec.png





_static/img/qrcode/gitter_qr.png





_static/img/logo/2.png
Olib





_static/img/logo/3.png
[





